A New Technique for Color Based Image Segmentation Using Support Vector Machines

被引:0
|
作者
Prasad, S. V. S. [1 ]
Savithri, T. Satya [2 ]
Krishna, Iyyanki V. Murali [3 ,4 ]
机构
[1] MLRIT, Dept ECE, Hyderabad, Andhra Pradesh, India
[2] JNTU, Dept ECE, Hyderabad, Andhra Pradesh, India
[3] CSIT, Hyderabad, Andhra Pradesh, India
[4] JNTU, Hyderabad, Andhra Pradesh, India
关键词
Decorrelation; M-estimator; LANDSAT imagery; Spatial resolution; Support Vector Machine;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Due to the large requirement in spacial imagery generating and updating geographical information, the segment-based image analysis methods are becoming more popular. Hence, this paper presents a new algorithm for image segmentation (for LANDSAT images) using low-level feature, i.e., color using Support Vector Machines. In the first step using de-correlation stretching color information is separated out from the satellite image and in the second step using M-estimator based support vector machine clustering algorithm the regions are grouped into a set of classes. A new M-estimator is proposed for robustification. Simulation results are provided to demonstrate the efficacy of the proposed support vector machine based clustering algorithm for color based image segmentation.
引用
收藏
页码:189 / 192
页数:4
相关论文
共 50 条
  • [1] Use of support vector machines for color image segmentation
    Selmi, Omar
    Pinti, A.
    Taleb-Ahmed, Abdelmalik
    Kerkeni, Naceur
    [J]. 2006 IMACS: Multiconference on Computational Engineering in Systems Applications, Vols 1 and 2, 2006, : 574 - 577
  • [2] Color images segmentation using the support vector machines
    Gómez-Moreno, H.
    Gil-Jiménez, P.
    Lafuente-Arroyo, S.
    Vicen-Bueno, R.
    Sánchez-Montero, R.
    [J]. Recent Advances in Intelligent Systems and Signal Processing, 2003, : 151 - 155
  • [3] Scenery image segmentation using support vector machines
    Yu, YH
    Chang, CC
    [J]. FUNDAMENTA INFORMATICAE, 2004, 61 (3-4) : 379 - 388
  • [4] Automated image segmentation using support vector machines
    Powell, Stephanie
    Magnotta, Vincent A.
    Andreasen, Nancy C.
    [J]. MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [5] Color Image Classification Using Support Vector Machines
    冯霞
    [J]. 中国民航大学学报, 2003, (S2) : 184 - 190
  • [6] Multiscale SAR image segmentation using support vector machines
    Liu, Ting
    Wen, Xian-Bin
    Quan, Jin-Juan
    Xu, Xue-Quan
    [J]. CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 3, PROCEEDINGS, 2008, : 706 - +
  • [8] Color image watermark extraction based on support vector machines
    Tsai, Hung-Hsu
    Sun, Duen-Wu
    [J]. INFORMATION SCIENCES, 2007, 177 (02) : 550 - 569
  • [9] Color segmentation of nuclei of blood cell using support vector machines
    Zeng, Ming
    Zhang, Jian-Xun
    Wang, Xiang-Hui
    Zhao, Ya-Jing
    Chen, Shao-Jie
    [J]. Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2006, 17 (04): : 479 - 483
  • [10] SEABED IMAGE SEGMENTATION USING RANDOM FORESTS AND SUPPORT VECTOR MACHINES
    Rimavicius, Tadas
    Gelzinis, Adas
    Vaiciukynas, Evaldas
    Olenin, Sergej
    Saskov, Aleksej
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROL TECHNOLOGIES, 2013, : 41 - 44