A flexible parametric competing-risks model using a direct likelihood approach for the cause-specific cumulative incidence function

被引:36
|
作者
Mozumder, Sarwar Islam [1 ]
Rutherford, Mark J. [1 ]
Lambert, Paul C. [1 ,2 ]
机构
[1] Univ Leicester, Dept Hlth Sci, Leicester, Leics, England
[2] Karolinska Inst, Med Epidemiol & Biostat, Stockholm, Sweden
来源
STATA JOURNAL | 2017年 / 17卷 / 02期
关键词
st0482; stpm2cr; survival analysis; competing risks; flexible parametric models; subdistribution hazard; cumulative incidence function; POPULATION-BASED-CANCER; PROPORTIONAL-HAZARDS; REGRESSION-MODELS; SURVIVAL ANALYSIS; SUBDISTRIBUTION; CURE;
D O I
10.1177/1536867X1701700212
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In competing-risks analysis, the cause-specific cumulative incidence function (CIF) is usually obtained in a modeling framework by either 1) transforming on all cause-specific hazards or 2) transforming by using a direct relationship with the subdistribution hazard function. We expand on current competing-risks methodology from within the flexible parametric survival modeling framework and focus on the second approach. This approach models all cause-specific CIFs simultaneously and is more useful for answering prognostic-related questions. We propose the direct flexible parametric survival modeling approach for the cause specific CIF. This approach models the (log cumulative) baseline hazard without requiring numerical integration, which leads to benefits in computational time. It is also easy to make out-of-sample predictions to estimate more useful measures and incorporate alternative link functions, for example, logit links. To implement these methods, we introduce a new estimation command, stpm2cr, and demonstrate useful predictions from the model through an illustrative melanoma dataset.
引用
收藏
页码:462 / 489
页数:28
相关论文
共 36 条
  • [1] Direct likelihood inference on the cause-specific cumulative incidence function: A flexible parametric regression modelling approach
    Mozumder, Sarwar Islam
    Rutherford, Mark
    Lambert, Paul
    [J]. STATISTICS IN MEDICINE, 2018, 37 (01) : 82 - 97
  • [2] Flexible parametric modelling of the cause-specific cumulative incidence function
    Lambert, Paul C.
    Wilkes, Sally R.
    Crowther, Michael J.
    [J]. STATISTICS IN MEDICINE, 2017, 36 (09) : 1429 - 1446
  • [3] Estimating sample size in the presence of competing risks - Cause-specific hazard or cumulative incidence approach?
    Tai, B. C.
    Chen, Z. J.
    Machin, D.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (01) : 114 - 125
  • [4] Comparing cumulative incidence functions of a competing-risks model
    Sun, YQ
    Tiwari, RC
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 1997, 46 (02) : 247 - 253
  • [5] Flexible parametric modelling of cause-specific hazards to estimate cumulative incidence functions
    Hinchliffe, Sally R.
    Lambert, Paul C.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2013, 13
  • [6] Flexible parametric modelling of cause-specific hazards to estimate cumulative incidence functions
    Sally R Hinchliffe
    Paul C Lambert
    [J]. BMC Medical Research Methodology, 13
  • [7] A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions
    Latouche, Aurelien
    Allignol, Arthur
    Beyersmann, Jan
    Labopin, Myriam
    Fine, Jason P.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2013, 66 (06) : 648 - 653
  • [8] Modelling two cause-specific hazards of competing risks in one cumulative proportional odds model?
    Ohneberg, Kristin
    Schumacher, Martin
    Beyersmann, Jan
    [J]. STATISTICS IN MEDICINE, 2017, 36 (27) : 4353 - 4363
  • [9] Penalized variable selection for cause-specific hazard frailty models with clustered competing-risks data
    Rakhmawati, Trias W.
    Ha, Il Do
    Lee, Hangbin
    Lee, Youngjo
    [J]. STATISTICS IN MEDICINE, 2021, 40 (29) : 6541 - 6557
  • [10] Nomograms for Estimating Cause-Specific Death Rates of Patients With Inflammatory Breast Cancer: A Competing-Risks Analysis
    Xu, Fengshuo
    Yang, Jin
    Han, Didi
    Huang, Qiao
    Li, Chengzhuo
    Zheng, Shuai
    Wang, Hui
    Lyu, Jun
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2021, 20