Numerical analysis of a solar driven thermoelectric generator brick with phase change materials: Performance evaluation and parametric investigations

被引:21
|
作者
Cai, Yang [1 ,2 ]
Hong, Bing-Hua [1 ]
Zhuang, Shi-Qiang [1 ]
An, Rong-Bang [1 ]
Wu, Wei-Xiong [1 ]
Zhao, Fu-Yun [3 ]
机构
[1] Jinan Univ, Energy & Elect Res Ctr, Zhuhai, Guangdong, Peoples R China
[2] South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou, Guangdong, Peoples R China
[3] Wuhan Univ, Sch Power & Mech Engn, Wuhan, Hubei, Peoples R China
基金
中国博士后科学基金;
关键词
Energy consumption; Solar thermoelectric generator brick; Phase change materials; Energy and exergy efficiencies; SYSTEM; OPTIMIZATION; DESIGN; CYCLE;
D O I
10.1016/j.applthermaleng.2022.118879
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermoelectric generator (TEG) integrated with phase change material (PCM) has attracted increasingly wide attentions in the past few years, such as PCM applied on the hot side to stabilize the temperature fluctuations or applied on the cold side to strengthen the heat dissipation. However, the dynamic characteristics and energy conversion potential of TEG with PCM on both sides have not been systematically investigated, especially in low carbon buildings. In the present work, a three-dimensional model of an innovative solar thermoelectric generator brick with double phase change materials (STEGB-DPCM) applied on the hot and cold sides simultaneously has been conducted, aiming to identify the energy conservation potential of the proposed system. This study is carried out with variable solar radiations, convective heat transfer coefficients and PCM thicknesses to illustrate the mechanism of different parameters on the STEGB-PCM from multiple indicators, including temperature difference, output power, energy and exergy efficiencies, and heat flux. Furthermore, the performance of STEGBDPCM has been compared with solar thermoelectric generator brick with PCM on the hot side or cold side (STEGB-HPCM or STEGB-CPCM) and solar thermoelectric generator brick without PCM (STEGB). The results show that the output power of STEGB-DPCM can be enhanced by 138.5% for solar radiation of 600-1000 W/m2. Meanwhile, the energy and exergy efficiencies of STEGB-DPCM are positive in proportion to the convective heat transfer coefficient with the energy efficiency of 0.113% and exergy efficiency of 0.122% at 3600 s for h = 15 W/ (m2 K). Although the output power of STEGB-DPCM decreases with the PCM thickness, the heat flux and the brick temperature can be effectively reduced by 92.1 W/m2 and 18.49 K, indicating a diminished demand for indoor cooling implement. This study will provide a worthwhile design assistance for building envelope system on improving thermal technology performance and indoor thermal environment.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Parametric analysis and potential evaluation of thermoelectric generator driven by solar energy and radiative sky cooling
    Wang, Jinglong
    Lu, Lin
    Chen, Jianheng
    Jia, Linrui
    SOLAR ENERGY, 2023, 264
  • [2] Enhanced thermal performance of a thermoelectric generator with phase change materials
    Selvam, C.
    Manikandan, S.
    Krishna, N. Vijay
    Lamba, Ravita
    Kaushik, S. C.
    Mahian, Omid
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 114
  • [3] Numerical Study of a Phase Change Material Integrated Solar Thermoelectric Generator
    Chika C. Maduabuchi
    Chigbo A. Mgbemene
    Journal of Electronic Materials, 2020, 49 : 5917 - 5936
  • [4] Numerical Study of a Phase Change Material Integrated Solar Thermoelectric Generator
    Maduabuchi, Chika C.
    Mgbemene, Chigbo A.
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (10) : 5917 - 5936
  • [5] Round-the-clock performance of solar thermoelectric wall with phase change material in subtropical climate: Critical analysis and parametric investigations
    Hong, Bing-Hua
    Huang, Xiao-Yan
    He, Jian-Wei
    Cai, Yang
    Wang, Wei-wei
    Zhao, Fu-Yun
    ENERGY, 2023, 272
  • [6] Parametric study on the thermoelectric conversion performance of a concentrated solar-driven thermionic-thermoelectric hybrid generator
    Xiao, Lan
    Wu, Shuang-Ying
    Yang, Shi-Ling
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (02) : 656 - 672
  • [7] Parametric thermal analysis of the performance of a thermoelectric generator
    Casano, G.
    Piva, S.
    6TH EUROPEAN THERMAL SCIENCES CONFERENCE (EUROTHERM 2012), 2012, 395
  • [8] Numerical analysis of a variety of thermoelectric generator materials
    Dhass, A. D.
    Krishna, R.
    Sreenivasan, M.
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 29 - 34
  • [9] Modified phase change materials used for thermal management of a novel solar thermoelectric generator
    Luo, Xiaohang
    Guo, Quangui
    Tao, Zechao
    Liang, Yanjuan
    Liu, Zhanjun
    ENERGY CONVERSION AND MANAGEMENT, 2020, 208
  • [10] Power generation of a thermoelectric generator with phase change materials
    Jo, Sung-Eun
    Kim, Myoung-Soo
    Kim, Min-Ki
    Kim, Yong-Jun
    SMART MATERIALS AND STRUCTURES, 2013, 22 (11)