Micromachining technology for lateral field emission devices

被引:26
|
作者
Milanovic, V [1 ]
Doherty, L
Teasdale, DA
Parsa, S
Pister, KSJ
机构
[1] La Jolla Microsyst Inst, San Diego, CA 92110 USA
[2] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, UC Berkeley Microfabricat Lab, Berkeley, CA 94720 USA
关键词
deep reactive ion etch; field emission device; MEMS; micromachining; vacuum microelectronics; vacuum tubes;
D O I
10.1109/16.892185
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a range of novel applications of micromachining and microelectromechanical systems (MEMS) for achieving efficient and tunable field emission devices (FEDs), Arrays of lateral field emission tips are fabricated with submicron spacing utilizing deep reactive ion etch (DRIE), Current densities above 150 A/cm(2) are achieved with over 150 . 10(6) tips/cm(2). With sacrificial sidewall spacing, electrodes can be placed at arbitrarily close distances to reduce turn-on voltages. F-Ve further utilize MEMS actuators to laterally adjust electrode distances. To improve the integration capability of FEDs, we demonstrate batch hump-transfer of working lateral FEDs onto a quartz target substrate.
引用
收藏
页码:166 / 173
页数:8
相关论文
共 50 条
  • [1] Emission current scaling in nanodiamond lateral field emission devices
    Subramanian, K.
    Kang, W. P.
    Davidson, J. L.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (02): : 532 - 535
  • [2] Novel Homogenization Field Technology in Lateral Power Devices
    Zhang, Bo
    Zhang, Wentong
    Zu, Jian
    Qiao, Ming
    Zhang, Sen
    Zhang, Zhili
    He, Boyong
    Li, Zhaoji
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (11) : 1677 - 1680
  • [3] Deep reactive ion etching for lateral field emission devices
    Milanovic, V
    Doherty, L
    Teasdale, DA
    Zhang, C
    Parsa, S
    Nguyen, V
    Last, M
    Pister, KSJ
    IEEE ELECTRON DEVICE LETTERS, 2000, 21 (06) : 271 - 273
  • [4] Field emission arrays by silicon micromachining
    Debski, T
    Volland, B
    Barth, W
    Shi, F
    Hudek, P
    Rangelow, IW
    Grabiec, P
    Studzinska, K
    Zaborowski, M
    Mitura, S
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (02): : 896 - 899
  • [5] Application of micromachining technology to optical devices and systems
    Fujita, H
    MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY II, 1996, 2879 : 2 - 11
  • [6] Application of micromachining technology to optical devices and systems
    Fujita, H
    MICROMACHINED DEVICES AND COMPONENTS II, 1996, 2882 : 2 - 11
  • [7] Application of micromachining technology to optical devices and systems
    Fujita, H
    MICROELECTRONIC STRUCTURES AND MEMS FOR OPTICAL PROCESSING II, 1996, 2881 : 2 - 11
  • [8] Application of micromachining technology to optical devices and systems
    Fujita, H
    MICROLITHOGRAPHY AND METROLOGY IN MICROMACHINING II, 1996, 2880 : 2 - 11
  • [9] A novel fabrication approach for carbon nanotube lateral field emission devices
    Wong, Y. M.
    Kang, W. P.
    Davidson, J. L.
    Huang, J. H.
    DIAMOND AND RELATED MATERIALS, 2006, 15 (11-12) : 1859 - 1862
  • [10] The effect of interelectrode spacing on field emission in nanodiamond lateral vacuum devices
    Subramanian, K.
    Kang, W. P.
    Davidson, J. L.
    Choi, B. K.
    DIAMOND AND RELATED MATERIALS, 2008, 17 (7-10) : 1808 - 1811