The contribution of the GRAV-D airborne gravity to geoid determination in the Great Lakes region

被引:22
|
作者
Li, Xiaopeng [1 ]
Crowley, John W. [2 ]
Holmes, Simon A. [3 ]
Wang, Yan-Ming [4 ]
机构
[1] DST Inc, Silver Spring, MD USA
[2] Nat Resources Canada, Ottawa, ON, Canada
[3] SGT Inc, Greenbelt, MD USA
[4] NOAA, Silver Spring, MD 20910 USA
关键词
airborne gravity; geoid; gravity field; Great Lakes; lake surface height; satellite altimetry;
D O I
10.1002/2016GL068374
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The current official North American Vertical Datum of 1988 (NAVD 88) and the International Great Lakes Datum of 1985 (IGLD 85) will be replaced by a new geoid-based vertical datum in 2022. The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project collects high-quality airborne gravity data to improve the quality of the gravitational model that underpins the geoid model. This paper validates the contribution of GRAV-D data in the Great Lakes region. Using the lake surface height measured by satellite altimetry as an independent data set, Global Gravity Models (GGMs) with/without the GRAV-D data are compared. The comparisons show that the improvement reaches decimeters over Lake Michigan where the historic gravity data have significant errors. Over all lakes, except Lake Erie, the GRAV-D data improve the accuracy of the gravitational model to 1-3 cm.
引用
收藏
页码:4358 / 4365
页数:8
相关论文
共 32 条
  • [1] Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA
    Matej Varga
    Martin Pitoňák
    Pavel Novák
    Tomislav Bašić
    Journal of Geodesy, 2021, 95
  • [2] Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA
    Varga, Matej
    Pitonak, Martin
    Novak, Pavel
    Basic, Tomislav
    JOURNAL OF GEODESY, 2021, 95 (05)
  • [3] The Geoid Slope Validation Survey 2014 and GRAV-D airborne gravity enhanced geoid comparison results in Iowa
    Y. M. Wang
    C. Becker
    G. Mader
    D. Martin
    X. Li
    T. Jiang
    S. Breidenbach
    C. Geoghegan
    D. Winester
    S. Guillaume
    B. Bürki
    Journal of Geodesy, 2017, 91 : 1261 - 1276
  • [4] The Geoid Slope Validation Survey 2014 and GRAV-D airborne gravity enhanced geoid comparison results in Iowa
    Wang, Y. M.
    Becker, C.
    Mader, G.
    Martin, D.
    Li, X.
    Jiang, T.
    Breidenbach, S.
    Geoghegan, C.
    Winester, D.
    Guillaume, S.
    Burki, B.
    JOURNAL OF GEODESY, 2017, 91 (10) : 1261 - 1276
  • [5] On geoid determination from airborne gravity
    P. Novák
    M. Kern
    K.-P. Schwarz
    M.G. Sideris
    B. Heck
    S. Ferguson
    Y. Hammada
    M. Wei
    Journal of Geodesy, 2003, 76 : 510 - 522
  • [6] On geoid determination from airborne gravity
    Novák, P
    Kern, M
    Schwarz, KP
    Sideris, MG
    Heck, B
    Ferguson, S
    Hammada, Y
    Wei, M
    JOURNAL OF GEODESY, 2003, 76 (9-10) : 510 - 522
  • [7] Local geoid determination based on airborne gravity data
    Hajkova, Jitka
    STUDIA GEOPHYSICA ET GEODAETICA, 2011, 55 (03) : 515 - 528
  • [8] Local geoid determination based on airborne gravity data
    Jitka Hájková
    Studia Geophysica et Geodaetica, 2011, 55 : 515 - 528
  • [9] Optimal model for geoid determination from airborne gravity
    Novák, P
    STUDIA GEOPHYSICA ET GEODAETICA, 2003, 47 (01) : 1 - 36
  • [10] Optimal Model for Geoid Determination from Airborne Gravity
    Pavel Novák
    Studia Geophysica et Geodaetica, 2003, 47 : 1 - 36