Effect of zirconia-mullite incorporated biphasic calcium phosphate/biopolymer composite scaffolds for bone tissue engineering

被引:3
|
作者
Rittidach, Tanawut [1 ]
Tithito, Tanatsaparn [1 ]
Suntornsaratoon, Panan [2 ,3 ]
Charoenphandhu, Narattaphol [2 ,3 ,4 ,5 ]
Thongbunchoo, Jirawan [2 ]
Krishnamra, Nateetip [2 ,3 ]
Tang, I. Ming [6 ]
Pon-On, Weeraphat [1 ]
机构
[1] Kasetsart Univ, Dept Phys, Fac Sci, Bangkok 10900, Thailand
[2] Mahidol Univ, Ctr Calcium & Bone Res, Fac Sci, Bangkok 10400, Thailand
[3] Mahidol Univ, Dept Physiol, Fac Sci, Bangkok 10400, Thailand
[4] Mahidol Univ, Inst Mol Biosci, Salaya 73170, Nakhon Pathom, Thailand
[5] Royal Soc Thailand, Acad Sci, Bangkok 10300, Thailand
[6] King Mongkuts Univ Technol, Computat & Appl Sci Smart Innovat Res Cluster CLA, Dept Math, Fac Sci, Bangkok 10149, Thailand
关键词
biphasic calcium phosphate; Mullite; composite scaffolds; polymers matrix; bone tissue engineering; MECHANICAL-PROPERTIES; BIOACTIVE GLASS; PHOSPHATE CERAMICS; PHASE-STABILITY; NANOCOMPOSITES; BIOCERAMICS; CEMENTS; MATRIX;
D O I
10.1088/2057-1976/aba1c2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
New bioactive scaffolds with improved mechanical properties, biocompatibility and providing structural support for bone tissue are being developed for use in the treatment of bone defects. In this study, we have synthesized bioactive scaffolds consisting of biphasic calcium phosphate (BCP) and zirconia-Mullite (2ZrO(2)center dot[3Al(2)O(3)center dot 2SiO(2)] (ZAS)) (BCPZAS) combined with polymers matrix of polycaprolactone (PCL)-alginate (Alg)-chitosan (Chi) (Chi/Alg-PCL) (BCPZAS@Chi/Alg-PCL). The composite material scaffolds were prepared by a blending technique. The microstructure, mechanical, bioactivity andin vitrobiological properties with different ratios of BCP to ZAS of 1:0, 3:1, 1:1, 1:3 and 0:1 wt% in polymer matrix were analyzed. Microstructure analysis showed a successful incorporation of the BCPZAS particles with an even distribution of them within the polymer matrix. The mechanical properties were found to gradually decrease with increasing the ratio of ZAS particles in the scaffolds. The highest compressive strength was 42.96 +/- 1.01 MPa for the 3:1 wt% BCP to ZAS mixing. Bioactivity test, the BCPZAS@Chi/Alg-PCL composite could induce apatite formation in simulate body fluid (SBF). In-vitro experiment using UMR-106 osteoblast-like cells on BCPZAS@Chi/Alg- PCL composite scaffold showed that there is cell attachment to the scaffolds with proliferation. These experimental results demonstrate that the BCPZAS@Chi/Alg-PCL composite especially for the BCP:ZAS at 3:1 wt% could be utilized as a scaffold for bone tissue engineering applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Biopolymer/Calcium Phosphate Scaffolds for Bone Tissue Engineering
    Li, Jianhua
    Baker, Bryan A.
    Mou, Xiaoning
    Ren, Na
    Qiu, Jichuan
    Boughton, Robert I.
    Liu, Hong
    ADVANCED HEALTHCARE MATERIALS, 2014, 3 (04) : 469 - 484
  • [2] Investigation of Calcium Phosphate-Based Biopolymer Composite Scaffolds for Bone Tissue Engineering
    Furko, Monika
    Horvath, Zsolt E.
    Tolnai, Istvan
    Balazsi, Katalin
    Balazsi, Csaba
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (24)
  • [3] Composite calcium phosphate scaffolds for bone tissue engineering
    Popp, J. R.
    Love, B. J.
    Laflin, K. E.
    Goldstein, A. S.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 829 - 830
  • [4] Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering
    Bakhtiari, Leila
    Rezaie, Hamid Reza
    Hosseinalipour, Seyed Mohamad
    Shokrgozar, Mohamad Ali
    CERAMICS INTERNATIONAL, 2010, 36 (08) : 2421 - 2426
  • [5] Evaluation of chitosan/biphasic calcium phosphate scaffolds for maxillofacial bone tissue engineering
    Urkmez, Aylin Sendemir
    Clark, Sherrie G.
    Wheeler, Matthew B.
    Goldwasser, Michael S.
    Jamison, Russell D.
    MACROMOLECULAR SYMPOSIA, 2008, 269 : 100 - 105
  • [6] Calcium phosphate-chitosan composite scaffolds for bone tissue engineering
    Zhang, Y
    Ni, M
    Zhang, MQ
    Ratner, B
    TISSUE ENGINEERING, 2003, 9 (02): : 337 - 345
  • [7] Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticlesicollagen porous composite scaffolds for bone tissue engineering
    Chen, Ying
    Kawazoe, Naoki
    Chen, Guoping
    ACTA BIOMATERIALIA, 2018, 67 : 341 - 353
  • [8] 3D Printed Biphasic Calcium Phosphate Scaffolds for Bone Tissue Engineering
    Xu, Zhimin
    You, Qi
    Li, Jiale
    Liu, Peng
    Wang, Ningning
    Sun, Jingchun
    Ha, Bing
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2019, 13 (01) : 93 - 101
  • [9] The bone-mimicking effect of calcium phosphate on composite chitosan scaffolds in maxillofacial bone tissue engineering
    Sangkert, Supaporn
    Kamolmatyakul, Suttatip
    Meesane, Jirut
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2020, 18
  • [10] Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering
    Ramay, HRR
    Zhang, M
    BIOMATERIALS, 2004, 25 (21) : 5171 - 5180