Secondary invariants for Frechet algebras and quasihomomorphisms

被引:0
|
作者
Perrot, Denis [1 ]
机构
[1] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
来源
DOCUMENTA MATHEMATICA | 2008年 / 13卷
关键词
K-theory; bivariant cyclic cohomology; index theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Frechet algebra endowed with a multiplicatively convex topology has two types of invariants: homotopy invariants (topological K-theory and periodic cyclic homology) and secondary invariants (multiplicative K-theory and the non-periodic versions of cyclic homology). The aim of this paper is to establish a Riemann-Roch-Grothendieck theorem relating direct images for homotopy and secondary invariants of Frechet m-algebras under finitely summable quasihomomorphisms.
引用
收藏
页码:275 / 363
页数:89
相关论文
共 50 条