Quantum nonlinear sigma model with a damping term; Finite temperature renormalization group analysis

被引:0
|
作者
Crisan, M [1 ]
Grosu, I [1 ]
机构
[1] Univ Cluj, Dept Theoret Phys, Cluj Napoca 400084, Romania
来源
JOURNAL OF SUPERCONDUCTIVITY | 2005年 / 18卷 / 04期
关键词
non-linear quantum sigma model; quantum criticality; pseudogap in HTCS;
D O I
10.1007/s10948-005-0041-y
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study the behavior of the finite temperature quantum nonlinear sigma model in two dimensions in the presence of the damping of the form f (vertical bar omega(n)vertical bar) = gamma vertical bar omega n vertical bar(alpha), where ce satisfies alpha >= 1. The analytical calculations will be performed using alpha = 2 and the results will be compared with the standard results obtained for the standard quantum nonlinear sigma model. The behavior of such a system is connected with the pseudogap which appears in the normal state of the cuprate superconductors.
引用
收藏
页码:561 / 565
页数:5
相关论文
共 50 条
  • [1] Quantum Nonlinear Sigma Model with a Damping Term; Finite Temperature Renormalization Group Analysis
    M. Crisan
    I. Grosu
    Journal of Superconductivity, 2005, 18 : 561 - 565
  • [2] Renormalization group analysis of the quantum non-linear sigma model with a damping term
    Gamba, A
    Grilli, M
    Castellani, C
    NUCLEAR PHYSICS B, 1999, 556 (03) : 463 - 484
  • [3] RENORMALIZATION OF SIGMA MODEL AT FINITE TEMPERATURE
    MOHAN, LRR
    PHYSICAL REVIEW D, 1976, 14 (10) : 2670 - 2686
  • [4] RENORMALIZATION-GROUP TREATMENT OF THE QUANTUM NONLINEAR SIGMA-MODEL
    ELSTNER, N
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 87 (02): : 197 - 202
  • [5] Finite temperature renormalization group effective potentials for the linear sigma model
    Shafer, JD
    Shepard, JR
    PHYSICAL REVIEW D, 2003, 67 (08)
  • [6] Renormalization group at finite temperature in quantum mechanics
    Gosselin, P
    Grosdidier, B
    Mohrbach, H
    PHYSICS LETTERS A, 1999, 256 (2-3) : 125 - 131
  • [7] Renormalization group in quantum mechanics at zero and finite temperature
    Gosselin, P.
    Mohrbach, H.
    Bérard, A.
    2001, American Institute of Physics Inc. (64): : 461291 - 461299
  • [8] Quantum phase transition of (1+1)-dimensional O(3) nonlinear sigma model at finite density with tensor renormalization group
    Luo, Xiao
    Kuramashi, Yoshinobu
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (11):
  • [9] Pokrovsky-Talapov model at finite temperature: A renormalization-group analysis
    Lazarides, A.
    Tieleman, O.
    Smith, C. Morais
    PHYSICAL REVIEW B, 2009, 80 (24)
  • [10] A FINITE-MODEL FOR THE RENORMALIZATION-GROUP ON QUANTUM LATTICES
    SURANYI, P
    NUCLEAR PHYSICS B, 1982, 205 (03) : 433 - 439