Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy

被引:50
|
作者
Ren, Gaidi [1 ,2 ]
Zhu, Chunwu [1 ,3 ]
Alam, M. Saiful [1 ,4 ]
Tokida, Takeshi [5 ]
Sakai, Hidemitsu [3 ]
Nakamura, Hirofumi [6 ]
Usui, Yasuhiro [3 ]
Zhu, Jianguo [1 ]
Hasegawa, Toshihiro [3 ]
Jia, Zhongjun [1 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Jiangsu, Peoples R China
[3] Natl Inst Agroenvironm Sci, Agrometeorol Div, Tsukuba, Ibaraki 3058604, Japan
[4] Bangabandhu Sheikh Mujibur Rahman Agr Univ, Dept Soil Sci, Gazipur 1706, Bangladesh
[5] Natl Inst Agroenvironm Sci, Carbon & Nutrient Cycles Div, Tsukuba, Ibaraki 3058604, Japan
[6] Taiyo Keiki Co Ltd, Kita Ku, Tokyo 1140032, Japan
基金
美国国家科学基金会;
关键词
Climate change; Global warming; Microbial community; Free air CO2 enrichment (FACE); Pyrosequence; Leaf-associated bacteria; MICROBIAL COMMUNITIES; GENOME SEQUENCE; ENDOPHYTIC BACTERIUM; POPULATION-STRUCTURE; FUNGAL ASSEMBLAGES; NITROGEN-FIXATION; GROWTH PROMOTION; ENRICHMENT FACE; DIVERSITY; ALTERS;
D O I
10.1007/s11104-015-2503-8
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The objective of this study was to elucidate the composition of bacterial communities from the soil, and endosphere and phyllosphere of upper and lower leaves and clarify the responses to elevated CO2 and/or soil temperature. Using 454 pyrosequencing, the 16S rRNA gene was analyzed from various bacterial communities in a rice paddy that was exposed to different atmospheric CO2 concentrations (ambient, +200 mu mol.mol(-1)) and soil temperatures (ambient, +2 A degrees C). The treatments of elevated temperature and elevated CO2 plus temperature exerted significant influence on the structure of bacterial communities from the lower leaf endosphere. A significant influence of elevated CO2 plus temperature on the community structure was also observed in the upper leaf phyllosphere. The richness and diversity of bacterial communities from the lower leaf phyllosphere, upper leaf endosphere, and upper leaf phyllosphere were significantly affected by elevated CO2 plus temperature. However, we did not observe any significant influence of all climate change treatments (elevated CO2, elevated temperature, and their combination) on the richness, diversity, and structure of soil bacterial communities. We also did not observe any significant effect of the single factor, elevated CO2, on the structure of the leaf endosphere and phyllosphere bacterial communities. Enterobacteriaceae and Xanthomonadaceae were the most shifted phylotypes in response to elevated temperature and elevated CO2 plus temperature. Soil bacterial communities were more resistant to the tested climate change factors compare with foliar bacterial communities. Temperature was a more important factor in shaping the structure of foliar bacterial communities compared with CO2. The response of leaf-associated bacterial communities could be influenced by the leaf location (upper leaf or lower leaf) within the rice plants and by the habitats (leaf endosphere or phyllosphere).
引用
收藏
页码:27 / 44
页数:18
相关论文
共 50 条
  • [1] Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy
    Gaidi Ren
    Chunwu Zhu
    M. Saiful Alam
    Takeshi Tokida
    Hidemitsu Sakai
    Hirofumi Nakamura
    Yasuhiro Usui
    Jianguo Zhu
    Toshihiro Hasegawa
    Zhongjun Jia
    Plant and Soil, 2015, 392 : 27 - 44
  • [2] Response of phyllosphere bacterial communities to elevated CO2 during rice growing season
    Ren, Gaidi
    Zhang, Huayong
    Lin, Xiangui
    Zhu, Jianguo
    Jia, Zhongjun
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (22) : 9459 - 9471
  • [3] Response of phyllosphere bacterial communities to elevated CO2 during rice growing season
    Gaidi Ren
    Huayong Zhang
    Xiangui Lin
    Jianguo Zhu
    Zhongjun Jia
    Applied Microbiology and Biotechnology, 2014, 98 : 9459 - 9471
  • [4] Contrasting Response Patterns of Rice Phyllosphere Bacterial Taxa to Elevated CO2
    REN Gai-Di
    ZHU Jian-Guo
    JIA Zhong-Jun
    Pedosphere, 2014, (04) : 544 - 552
  • [5] Contrasting Response Patterns of Rice Phyllosphere Bacterial Taxa to Elevated CO2
    Ren Gai-Di
    Zhu Jian-Guo
    Jia Zhong-Jun
    PEDOSPHERE, 2014, 24 (04) : 544 - 552
  • [6] Elevated CO2 improved soil nitrogen mineralization capacity of rice paddy
    Wu, Qicong
    Zhang, Congzhi
    Liang, Xuequan
    Zhu, Chunwu
    Wang, Tingyun
    Zhang, Jiabao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 710
  • [7] Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature
    Tokida, Takeshi
    Adachi, Minaco
    Cheng, Weiguo
    Nakajima, Yasuhiro
    Fumoto, Tamon
    Matsushima, Miwa
    Nakamura, Hirofumi
    Okada, Masumi
    Sameshima, Ryoji
    Hasegawa, Toshihiro
    GLOBAL CHANGE BIOLOGY, 2011, 17 (11) : 3327 - 3337
  • [8] Abundance and composition response of wheat field soil bacterial and fungal communities to elevated CO2 and increased air temperature
    Yuan Liu
    Hui Zhang
    Minghua Xiong
    Feng Li
    Lianqing Li
    Guangli Wang
    Genxing Pan
    Biology and Fertility of Soils, 2017, 53 : 3 - 8
  • [9] Abundance and composition response of wheat field soil bacterial and fungal communities to elevated CO2 and increased air temperature
    Liu, Yuan
    Zhang, Hui
    Xiong, Minghua
    Li, Feng
    Li, Lianqing
    Wang, Guangli
    Pan, Genxing
    BIOLOGY AND FERTILITY OF SOILS, 2017, 53 (01) : 3 - 8
  • [10] Warming but not elevated CO2 depletes soil organic carbon in a temperate rice paddy
    Song, Hyeon Ji
    Mishra, Umakant
    Park, So Yeong
    Seo, Young Ho
    Turner, Benjamin L.
    Galgo, Snowie J.
    Kim, Pil Joo
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2025, 379