Using a hidden Markov model to measure earnings quality

被引:14
|
作者
Du, Kai [1 ,2 ]
Huddart, Steven [1 ]
Xue, Lingzhou [3 ]
Zhang, Yifan [1 ]
机构
[1] Penn State Univ, Smeal Coll Business, University Pk, PA 16802 USA
[2] US Secur & Exchange Commiss, 100 F St NE, Washington, DC 20549 USA
[3] Penn State Univ, Eberly Coll Sci, University Pk, PA 16802 USA
来源
JOURNAL OF ACCOUNTING & ECONOMICS | 2020年 / 69卷 / 2-3期
基金
美国国家科学基金会;
关键词
Hidden Markov model; Bayesian hierarchical framework; MCMC methods; Earnings quality; Earnings fidelity; TIME-SERIES; MANAGEMENT; DISTRIBUTIONS; DETERMINANTS; DISCLOSURE; ACCRUALS; RETURNS; PROXIES; FUTURE;
D O I
10.1016/j.jacceco.2019.101281
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose and validate a new measure of earnings quality based on a hidden Markov model. This measure, termed earnings fidelity, captures how faithful earnings signals are in revealing the true economic state of the firm. We estimate the measure using a Markov chain Monte Carlo procedure in a Bayesian hierarchical framework that accommodates cross-sectional heterogeneity. Earnings fidelity is positively associated with the forward earnings response coefficient. It significantly outperforms existing measures of quality in predicting two external indicators of low-quality accounting: restatements and Securities and Exchange Commission comment letters. Published by Elsevier B.V.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A hidden Markov model of credit quality
    Korolkiewicz, Malgorzata W.
    Elliott, Robert J.
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2008, 32 (12): : 3807 - 3819
  • [2] Markov Financial Model Using Hidden Markov Model
    Luc Tri Tuyen
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 40 (10): : 72 - 83
  • [3] Enhancing the Quality of Phylogenetic Analysis using Fuzzy Hidden Markov Model Alignments
    Collyda, Chrysa
    Diplaris, Sotiris
    Mitkas, Pericles
    Maglaveras, Nicos
    Pappas, Costas
    [J]. MEDINFO 2007: PROCEEDINGS OF THE 12TH WORLD CONGRESS ON HEALTH (MEDICAL) INFORMATICS, PTS 1 AND 2: BUILDING SUSTAINABLE HEALTH SYSTEMS, 2007, 129 : 1245 - +
  • [4] Using the hidden Markov model to capture quality of care in Lombardy geriatric wards
    Mitchell, Hannah
    Marshall, Adele H.
    Zenga, Mariangela
    [J]. OPERATIONS RESEARCH FOR HEALTH CARE, 2015, 7 : 103 - 110
  • [5] An Image Quality Assessment Metric with No Reference Using Hidden Markov Tree Model
    Gao, Fei
    Gao, Xinbo
    Lu, Wen
    Tao, Dacheng
    Li, Xuelong
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2010, 2010, 7744
  • [6] Video summarization using Hidden Markov Model
    Huang, CL
    Chang, CY
    [J]. INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: CODING AND COMPUTING, PROCEEDINGS, 2001, : 473 - 477
  • [7] Multiuser Detection Using Hidden Markov Model
    Chen, Fangjiong
    Kwong, Sam
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (01) : 107 - 115
  • [8] Tuberculosis Surveillance Using a Hidden Markov Model
    Rafei, A.
    Pasha, E.
    Orak, R. Jamshidi
    [J]. IRANIAN JOURNAL OF PUBLIC HEALTH, 2012, 41 (10) : 87 - 96
  • [9] ROBUST QUANTIFICATION OF PULMONARY EMPHYSEMA WITH A HIDDEN MARKOV MEASURE FIELD MODEL
    Haeme, Yrjoe
    Angelini, Elsa D.
    Hoffman, Eric A.
    Barr, R. Graham
    Laine, Andrew F.
    [J]. 2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 382 - 385
  • [10] Attack Prediction using Hidden Markov Model
    Dass, Shuvalaxmi
    Datta, Prerit
    Namin, Akbar Siami
    [J]. 2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1695 - 1702