Morphological, dielectric and transport properties of garnet-type Li6.25+yAl0.25La3Zr2-yMnyO12 (y=0, 0.05, 0.1, and 0.2)

被引:23
|
作者
Dubey, Brahma Prakash [1 ]
Sahoo, Asit [1 ]
Thangadurai, Venkataraman [2 ]
Sharma, Yogesh [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Phys, Roorkee 247667, Uttarakhand, India
[2] Univ Calgary, Dept Chem, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
LI-ION CONDUCTIVITY; DOPED LI7LA3ZR2O12; SOLID-ELECTROLYTE; PHASE-TRANSITION; CRYSTAL-STRUCTURE; SITE OCCUPATION; AIR STABILITY; AL; TA; GA;
D O I
10.1016/j.ssi.2020.115339
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Garnet-type solid Li ion conductor Li7La3Zr2O12 (LLZO) has received considerable attention due to its high total (bulk + grain boundary) ionic conductivity at room temperature and its chemical stability with Li metal. To improve the ionic conductivity of LLZO, the hetrovalent doping at Zr-site and Al-doping at Li site was done for the optimization of Li concentration in LLZO. Thus, considering prominent role of various dopant in ionic and/or electronic conduction of LLZO, the effect of Mndoping at Zr-site in the Al-doped Li6.25+yAl0.25La3Zr2-yMnyO12 (y = 0, 0.05, 0.1, 0.2) on the microstructure, dielectric and transport properties is studied. The Mndoping at Zr-site in Al-LLZO is confirmed by electron paramagnetic resonance and X-ray photoelectron spectroscopy techniques. A correlation between structure, microstructure and the Li+ ion conduction is established. Amongst all investigated compounds, Li6.35Al0.25La3Zr1.9Mn0.1O12 exhibit highest total ionic conductivity of 0.34 x 10(-4) Scm(-1) at 25 degrees C. Further, the electrochemical window and stability of Mn doped-LLZO with Li metal is examined by cyclic voltammetry.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Fast Charge Transfer Kinetics of the Lithium Metal Anode on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12
    Krauskopf, Thorben
    Mogwitz, Boris
    Hartmann, Hannah
    Singh, Dheeraj K.
    Zeier, Wolfgang G.
    Janek, Juergen
    ADVANCED ENERGY MATERIALS, 2020, 10 (27)
  • [2] Defect chemistry and electrical properties of garnet-type Li7La3Zr2O12
    Zhan, Xiaowen
    Lai, Shen
    Gobet, Mallory P.
    Greenbaum, Steven G.
    Shirpour, Mona
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (03) : 1447 - 1459
  • [3] Processing and Properties of Garnet-Type Li7La3Zr2O12 Ceramic Electrolytes
    Chen, Chao
    Wang, Kexin
    He, Hongying
    Hanc, Emil
    Kotobuki, Masashi
    Lu, Li
    SMALL, 2023, 19 (12)
  • [4] Visualization and quantification of Li distribution in garnet solid electrolytes Li6.25La3Zr2Al0.25O12
    Zhang, Zhigang
    Zhao, Enyue
    Yin, Wen
    Wang, Baotian
    Li, Ying
    Wang, Fangwei
    APPLIED PHYSICS LETTERS, 2024, 125 (24)
  • [5] Working Principle of an Ionic Liquid Interlayer During Pressureless Lithium Stripping on Li6.25Al0.25La3Zr2O12 (LLZO) Garnet-Type Solid Electrolyte
    Fuchs, Till
    Mogwitz, Boris
    Otto, Svenja-Katharina
    Passerini, Stefano
    Richter, Felix H.
    Janek, Juergen
    BATTERIES & SUPERCAPS, 2021, 4 (07) : 1145 - 1155
  • [6] Enhancing the ionic conductivity and stabilizing cubic structure of garnet-type Li6.25-xAl0.25La3Zr 2-xTaxO12 by Al/Ta co-doping
    Yan, Shuhao
    Cui, Qianyue
    Sun, Chaochao
    Hao, Junjie
    Chu, Xiangcheng
    Xie, Haoran
    Lin, Shengzeng
    Zhang, Xiaodong
    JOURNAL OF SOLID STATE CHEMISTRY, 2021, 295
  • [7] Synthesis of Garnet-type Li7La3Zr2O12 by Coprecipitation Method
    Hamao, Naoki
    Akimoto, Junji
    CHEMISTRY LETTERS, 2015, 44 (07) : 970 - 972
  • [8] Boron Nitride Enhanced Garnet-Type (Li6.25Al0.25La3Zr2O12) Ceramic Electrolyte for an All-Solid-State Lithium-Ion Battery
    Zhang, Zhenyu
    Gonzalez, Antonio Ruiz
    Choy, Kwang Leong
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (10): : 7438 - 7448
  • [9] Photoluminescence properties of Eu3+ in garnet-type Li7La3Zr2O12 polycrystalline ceramics
    Zhang, Xinmin
    Zhang, Zhongfeng
    Kim, Sun Il
    Yu, Young Moon
    Seo, Hyo Jin
    CERAMICS INTERNATIONAL, 2014, 40 (01) : 2173 - 2178
  • [10] Ionic liquid composites with garnet-type Li6.75Al0.25La3Zr2O12: Stability, electrical transport, and potential for energy storage applications
    Kaur, Gurpreet
    Sharma, Shrishti
    Singh, M. Dinachandra
    Nalwa, Kanwar S.
    Sivasubramanian, Seshadri Chandrasekara
    Dalvi, Anshuman
    Materials Chemistry and Physics, 2024, 317