Explaining Simple Natural Language Inference

被引:0
|
作者
Kalouli, Aikaterini-Lida [1 ]
Buis, Annebeth [2 ]
Real, Livy [3 ]
Palmer, Martha [2 ]
de Paiva, Valeria [4 ]
机构
[1] Univ Konstanz, Constance, Germany
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Sao Paulo, Sao Paulo, Brazil
[4] Univ Birmingham, Birmingham, W Midlands, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The vast amount of research introducing new corpora and techniques for (semi-)automatically annotating corpora shows the important role that datasets play in today's research, especially in the machine learning community. This rapid development raises concerns about the quality of the datasets created and consequently of the models trained, as recently discussed with respect to the Natural Language Inference (NLI) task. In this work we conduct an annotation experiment based on a small subset of the SICK corpus. The experiment reveals several problems in the annotation guidelines, and various challenges of the NLI task itself. Our quantitative evaluation of the experiment allows us to assign our empirical observations to specific linguistic phenomena and leads us to recommendations for future annotation tasks, for NLI and possibly for other tasks.
引用
收藏
页码:132 / 143
页数:12
相关论文
共 50 条
  • [1] Explaining Text Matching on Neural Natural Language Inference
    Kim, Youngwoo
    Jang, Myungha
    Allan, James
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (04)
  • [2] Embarrassingly Simple Performance Prediction for Abductive Natural Language Inference
    Kadikis, Emils
    Srivastav, Vaibhav
    Klinger, Roman
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 6031 - 6037
  • [3] How Fast can BERT Learn Simple Natural Language Inference?
    Lin, Yi-Chung
    Su, Keh-Yih
    [J]. 16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 626 - 633
  • [4] InferLite: Simple Universal Sentence Representations from Natural Language Inference Data
    Kiros, Jamie Ryan
    Chan, William
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 4868 - 4874
  • [5] Natural Language Inference in Coq
    Chatzikyriakidis, Stergios
    Luo, Zhaohui
    [J]. JOURNAL OF LOGIC LANGUAGE AND INFORMATION, 2014, 23 (04) : 441 - 480
  • [6] Communication and inference in natural language
    da Costa, Jorge Campos
    [J]. LETRAS DE HOJE-ESTUDOS E DEBATES EM LINGUISTICA LITERATURA E LINGUA PORTUGUESA, 2005, 40 (01): : 107 - 133
  • [7] Natural Language Inference in Coq
    Stergios Chatzikyriakidis
    Zhaohui Luo
    [J]. Journal of Logic, Language and Information, 2014, 23 : 441 - 480
  • [8] Dialogue Natural Language Inference
    Welleck, Sean
    Weston, Jason
    Szlam, Arthur
    Cho, Kyunghyun
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 3731 - 3741
  • [9] Explaining Natural Language query results
    Deutch, Daniel
    Frost, Nave
    Gilad, Amir
    [J]. VLDB JOURNAL, 2020, 29 (01): : 485 - 508
  • [10] Explaining Natural Language query results
    Daniel Deutch
    Nave Frost
    Amir Gilad
    [J]. The VLDB Journal, 2020, 29 : 485 - 508