Impact of hydrogen sulfide on biochar in stimulating the methane oxidation capacity and microbial communities of landfill cover soil

被引:6
|
作者
Huang, Dandan [1 ]
Xu, Wenjun [1 ]
Wang, Qian [1 ]
Xu, Qiyong [1 ]
机构
[1] Peking Univ Shenzhen Grad Sch, Sch Environm & Energy, Shenzhen Engn Lab Ecoefficient Recycled Mat, Shenzhen 518055, Peoples R China
基金
国家重点研发计划;
关键词
Methane; Hydrogen sulfide; Landfill cover soil; Biochar; Methanotroph; SULFUR-COMPOUNDS; H2S; MECHANISMS; KINETICS; REMOVAL; COMPOST; SYSTEMS; GAS;
D O I
10.1016/j.chemosphere.2021.131650
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrogen sulfide (H2S) can influence methanotrophic activities and be adsorbed by biochar (BC); however, the impact of H2S on BC in stimulating the methane (CH4) oxidation capacity of landfill cover soil (LCS) has not been clarified. Thus, batch incubation experiments were conducted to observe the effect of H2S on the CH4 oxidation capacity of and microbial communities in BC-amended LCS. Three landfill gas conditions were considered: 5 % CH4 and 15 % oxygen (O2) (5 M), 10 % CH4 and 10 % O2, and 20 % CH4 and 5 % O2 (20 M) by volume, with H2S concentrations of 0, 100, 250, and 1000 ppm, respectively. Another series was conducted using LCS subjected to pre-H2S saturation under the 20 M gas condition. In the 5 M gas condition suitable for the dominant methanotroph Methylocaldum (type I), the BC retained its ability to stimulate the CH4 oxidation capacity of LCS (enhancement of 41-108 %) in the presence of H2S. Additionally, when H2S < 250 ppm, the BC exhibited a relatively consistent impact of H2S on both CH4 oxidation capacity and microbial communities in LCS, independent of the CH4 or O2 concentrations. This result could be attributed to the different pathways of H2S metabolism for the LCS and BC-amended LCS. Furthermore, when saturated adsorption of H2S occurred for the LCS, the CH4 oxidation capacity for BC-amended LCS was higher than that for non-amended LCS, which demonstrated the ability of BC in alleviating the inhibition of H2S on CH4 oxidation due to its excellent H2S adsorption under even anoxic environments.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Enhanced Microbial Methane Oxidation in Landfill Cover Soil Amended with Biochar
    Reddy, Krishna R.
    Yargicoglu, Erin N.
    Yue, Dongbei
    Yaghoubi, Poupak
    [J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2014, 140 (09)
  • [2] Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms
    He, Ruo
    Ruan, Aidong
    Jiang, Chenjing
    Shen, Dong-sheng
    [J]. BIORESOURCE TECHNOLOGY, 2008, 99 (15) : 7192 - 7199
  • [3] Methane Oxidation and Microbial Community Dynamics in Activated Biochar-Amended Landfill Soil Cover
    Chetri, Jyoti K.
    Reddy, Krishna R.
    Green, Stefan J.
    [J]. JOURNAL OF ENVIRONMENTAL ENGINEERING, 2022, 148 (04)
  • [4] Methane oxidation and microbial exopolymer production in landfill cover soil
    Hilger, HA
    Cranford, DF
    Barlaz, MA
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (04): : 457 - 467
  • [5] Role of Temperature in Microbial Methane Oxidation in Landfill Cover Soil
    Rai, Raksha K.
    Chetri, Jyoti K.
    Reddy, Krishna R.
    [J]. GEO-SYSTEMS, SUSTAINABILITY, GEOENVIRONMENTAL ENGINEERING, AND UNSATURATED SOIL MECHANICS (GEO-CONGRESS 2020), 2020, (319): : 151 - 158
  • [6] Methane Oxidation in Landfill Cover Soil
    A. Yu. Kallistova
    M. V. Kevbrina
    V. K. Nekrasova
    M. V. Glagolev
    M. I. Serebryanaya
    A. N. Nozhevnikova
    [J]. Microbiology, 2005, 74 : 608 - 614
  • [7] Methane oxidation in landfill cover soil
    Kallistova, AY
    Kevbrina, MV
    Nekrasova, VK
    Glagolev, MV
    Serebryanaya, MI
    Nozhevnikova, AN
    [J]. MICROBIOLOGY, 2005, 74 (05) : 608 - 614
  • [8] Effects of Hydrophobic Biochar-Modified Landfill Soil Cover on Methane Oxidation
    Li, Qiuhong
    Xing, Meiyan
    Dong, Bin
    Sun, Xiaojie
    Zhang, Hongxia
    Lu, Xueshuang
    Wu, Beibei
    Zhu, Hongxiang
    [J]. Environmental Management, 2024, 73 (04) : 769 - 776
  • [9] Effects of Hydrophobic Biochar-Modified Landfill Soil Cover on Methane Oxidation
    Li, Qiuhong
    Xing, Meiyan
    Dong, Bin
    Sun, Xiaojie
    Zhang, Hongxia
    Lu, Xueshuang
    Wu, Beibei
    Zhu, Hongxiang
    [J]. ENVIRONMENTAL MANAGEMENT, 2023, 73 (4) : 769 - 776
  • [10] Effects of Hydrophobic Biochar-Modified Landfill Soil Cover on Methane Oxidation
    Qiuhong Li
    Meiyan Xing
    Bin Dong
    Xiaojie Sun
    Hongxia Zhang
    Xueshuang Lu
    Beibei Wu
    Hongxiang Zhu
    [J]. Environmental Management, 2024, 73 : 769 - 776