Spline smoothing on surfaces

被引:17
|
作者
Duchamp, T
Stuetzle, W
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Washington, Dept Stat, Seattle, WA 98195 USA
关键词
finite element method; Laplace-Beltrami operator; smoothing; splines; subdivision surface;
D O I
10.1198/1061860031743
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article presents a method for estimating functions on topologically and/or geometrically complex surfaces from possibly noisy observations. Our approach is an extension of spline smoothing, using a finite element method. The article has a substantial tutorial component: we start by reviewing smoothness measures for functions defined on surfaces, simplicial surfaces and differentiable structures on such surfaces, subdivison functions, and subdivision surfaces. After describing our method, we show results of an experiment comparing finite element approximations to exact smoothing splines on the sphere, and we give examples suggesting that generalized cross-validation is an effective way of determining the optimal degree of smoothing for function estimation on surfaces.
引用
收藏
页码:354 / 381
页数:28
相关论文
共 50 条
  • [1] Smoothing spline curves and surfaces for sampled data
    Fujioka, Hiroyuki
    Kano, Hiroyuki
    Egerstedt, Magnus
    Martin, Clyde F.
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2005, 1 (03): : 429 - 449
  • [2] Optimal Smoothing Spline Surfaces with Constraints on Derivatives
    Fujioka, Hiroyuki
    Kano, Hiroyuki
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 7819 - 7824
  • [3] Integral smoothing operation of composite B-spline surfaces
    Huang, ZD
    Wang, QF
    Zhou, J
    Yu, J
    [J]. FOURTH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, 1996, 2644 : 158 - 163
  • [4] A SIMPLE SMOOTHING SPLINE
    EUBANK, RL
    [J]. AMERICAN STATISTICIAN, 1994, 48 (02): : 103 - 106
  • [5] COMPLETE SPLINE SMOOTHING
    HU, CL
    SCHUMAKER, LL
    [J]. NUMERISCHE MATHEMATIK, 1986, 49 (01) : 1 - 10
  • [6] SMOOTHING BY SPLINE FUNCTIONS
    REINSCH, CH
    [J]. NUMERISCHE MATHEMATIK, 1967, 10 (03) : 177 - &
  • [7] Smoothing spline ANOPOW
    Stoffer, David S.
    Han, Sangdae
    Qin, Li
    Guo, Wensheng
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3789 - 3796
  • [8] Constrained spline smoothing
    Kopotun, K.
    Leviatan, D.
    Prymak, A. V.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 1985 - 1997
  • [9] Smoothing an arc spline
    Li, Z
    Meek, DS
    [J]. COMPUTERS & GRAPHICS-UK, 2005, 29 (04): : 576 - 587
  • [10] Smoothing spline: local adaptive smoothing parameter
    Boucheta, R.
    Djeddi, M.
    [J]. Advances in Modelling and Analysis A, 1994, 20 (2-4): : 55 - 64