Consistent Segmentation of Longitudinal Brain MR Images with Spatio-Temporal Constrained Networks

被引:5
|
作者
Wei, Jie [1 ,2 ,3 ]
Shi, Feng [4 ]
Cui, Zhiming [3 ,5 ]
Pan, Yongsheng [1 ,2 ,3 ]
Xia, Yong [1 ,2 ]
Shen, Dinggang [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated AeroSp Ground Ocean Big, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
[3] ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
[4] Shanghai United Imaging Intelligence Co Ltd, Shanghai, Peoples R China
[5] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Brain MR images; Consistent longitudinal segmentation; Semi-supervised learning;
D O I
10.1007/978-3-030-87193-2_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate and consistent segmentation of longitudinal brain magnetic resonance (MR) images is of great importance in studying brain morphological and functional changes over time. However, current available brain segmentation methods, especially deep learning methods, are mostly trained with cross-sectional brain images that might generate inconsistent results in longitudinal studies. To overcome this limitation, we present a novel coarse-to-fine spatio-temporal constrained deep learning model for consistent longitudinal segmentation based on limited labeled cross-sectional data with semi-supervised learning. Specifically, both segmentation smoothness and temporal consistency are imposed in the loss function. Moreover, brain structural changes over time are summarized as age constraint, to make the model better reflect the trends of longitudinal aging changes. We validate our proposed method on 53 sets of longitudinal T1-weighted brain MR images from ADNI, with an average of 4.5 time-points per subject. Both quantitative and qualitative comparisons with comparison methods demonstrate the superior performance of our proposed method.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [1] A Probabilistic framework for the spatio-temporal segmentation of multiple sclerosis lesions in MR images of the brain
    Greenspan, H
    Mayer, A
    Shahar, A
    [J]. MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1551 - 1559
  • [2] Consistent Multi-Atlas Hippocampus Segmentation for Longitudinal MR Brain Images with Temporal Sparse Representation
    Wang, Lin
    Guo, Yanrong
    Cao, Xiaohuan
    Wu, Guorong
    Shen, Dinggang
    [J]. PATCH-BASED TECHNIQUES IN MEDICAL IMAGING, PATCH-MI 2016, 2016, 9993 : 34 - 42
  • [3] Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation
    Roy, Snehashis
    Carass, Aaron
    Pacheco, Jennifer
    Bilgel, Murat
    Resnick, Susan M.
    Prince, Jerry L.
    Pham, Dzung L.
    [J]. NEUROIMAGE-CLINICAL, 2016, 11 : 264 - 275
  • [4] Segmentation of longitudinal brain MR images using bias correction embedded fuzzy c-means with non-locally spatio-temporal regularization
    Feng, Chaolu
    Zhao, Dazhe
    Huang, Min
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 38 : 517 - 529
  • [5] Illumination invariant segmentation of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 617 - 622
  • [6] Spatio-temporal joint probability images for video segmentation
    Li, ZN
    Wei, J
    [J]. 2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2000, : 295 - 298
  • [7] Spatio-temporal segmentation
    Swain, C
    Puri, A
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1233 - 1236
  • [8] Interactive Visualization for Brain Spatio-Temporal Networks
    Purgato, Andrea
    Santambrogio, Marco D.
    Berger-Wolf, Tanya
    Forbes, Angus G.
    [J]. 2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 21 - 24
  • [9] Stacked Spatio-Temporal Graph Convolutional Networks for Action Segmentation
    Ghosh, Pallabi
    Yao, Yi
    Davis, Larry S.
    Divakaran, Ajay
    [J]. 2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 565 - 574
  • [10] Spatio-temporal analysis tool for modeling pulmonary nodules in MR images
    Shen, Li
    Huang, Heng
    Ford, James
    Lu, Chia-Hsin
    Gao, Ling
    Zheng, Wei
    Makedon, Fillia
    Pearlman, Justin
    [J]. MEDICAL IMAGING 2006: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND DISPLAY, 2006, 6141