Synchronous Digital Implementation of the AER Communication Scheme for Emulating Large-Scale Spiking Neural Networks Models

被引:5
|
作者
Moreno, J. M. [1 ]
Madrenas, J. [1 ]
Kotynia, L. [2 ]
机构
[1] Tech Univ Catalunya, Dept Elect Engn, Barcelona, Spain
[2] Tech Univ Lodz, Dept Microelect & Comp Engn, PL-90924 Lodz, Poland
关键词
D O I
10.1109/AHS.2009.14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we shall present a fully synchronous digital implementation of the Address Event Representation (AER) communication scheme that has been used in the PERPLEXUS chip in order to permit the emulation of large-scale biologically inspired spiking neural networks models. By introducing specific commands in the AER protocol it is possible to distribute the AER bus among a large number of chips where the functionality of the spiking neurons is being emulated. A careful design of the AER encoder module using compact Content Addressable Memories (CAMs) allows for a feasible realization of large-scale models.
引用
收藏
页码:189 / +
页数:3
相关论文
共 50 条
  • [1] Large-Scale Spiking Neural Networks using Neuromorphic Hardware Compatible Models
    Krichmar, Jeffrey L.
    Coussy, Philippe
    Dutt, Nikil
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2015, 11 (04)
  • [2] An FPGA design framework for large-scale spiking neural networks
    Wang, Runchun
    Hamilton, Tara Julia
    Tapson, Jonathan
    van Schaik, Andre
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 457 - 460
  • [3] Dynamics of pruning in simulated large-scale spiking neural networks
    Iglesias, J
    Eriksson, J
    Grize, F
    Tomassini, M
    Villa, AEP
    [J]. BIOSYSTEMS, 2005, 79 (1-3) : 11 - 20
  • [4] Challenges for large-scale implementations of spiking neural networks on FPGAs
    Maguire, L. P.
    McGinnity, T. M.
    Glackin, B.
    Ghani, A.
    Belatreche, A.
    Harkin, J.
    [J]. NEUROCOMPUTING, 2007, 71 (1-3) : 13 - 29
  • [5] Rethinking residual connection in training large-scale spiking neural networks
    Li, Yudong
    Lei, Yunlin
    Yang, Xu
    [J]. Neurocomputing, 2025, 616
  • [6] RECONFIGURABLE PLATFORMS AND THE CHALLENGES FOR LARGE-SCALE IMPLEMENTATIONS OF SPIKING NEURAL NETWORKS
    Harkin, Jim
    Morgan, Fearghal
    Hall, Steve
    Dudek, Piotr
    Dowrick, Thomas
    McDaid, Liam
    [J]. 2008 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE AND LOGIC APPLICATIONS, VOLS 1 AND 2, 2008, : 482 - +
  • [7] MODELS OF COMMUNICATION NETWORKS IN LARGE-SCALE SYSTEMS.
    Gasalino, G.
    Davoli, F.
    Puliafito, P.P.
    Zoppoli, R.
    [J]. Ricerche di Automatica, 1976, 7 (01): : 60 - 91
  • [8] A novel approach for the implementation of large scale spiking neural networks on FPGA hardware
    Glackin, B
    McGinnity, TM
    Maguire, LP
    Wu, Q
    Belatreche, A
    [J]. COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 552 - 563
  • [9] Accelerating Spatiotemporal Supervised Training of Large-Scale Spiking Neural Networks on GPU
    Liang, Ling
    Chen, Zhaodong
    Deng, Lei
    Tu, Fengbin
    Li, Guoqi
    Xie, Yuan
    [J]. PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 658 - 663
  • [10] Digital Optical Neural Networks for Large-Scale Machine Learning
    Bernstein, Liane
    Sludds, Alexander
    Hamerly, Ryan
    Sze, Vivienne
    Emer, Joel
    Englund, Dirk
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,