Sentiment Analysis Based on Deep Learning Methods for Explainable Recommendations with Reviews

被引:4
|
作者
Zarzour, Hafed [1 ]
Al Shboul, Bashar [2 ]
Al-Ayyoub, Mahmoud [3 ]
Jararweh, Yaser [3 ]
机构
[1] Univ Souk Ahras, Dept Comp Sci, Souk Ahras, Algeria
[2] Hashemite Univ, Zarqa, Jordan
[3] Jordan Univ Sci & Technol, Irbid, Jordan
关键词
sentiment analysis; explainable; recommendation; recommender system; deep learning; LSTM; GRU;
D O I
10.1109/ICICS52457.2021.9464601
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Explainable recommendation systems have gained much attention in the last few years. Most of them use textual reviews to provide users with interpretability about why services or products are liked by users or recommended for them. Sentiment analysis has potential advantages to determine the attitudes of users in online communities using websites such as Twitter, Facebook, and YouTube. However, sentiment analysis of textual reviews in explainable recommendation systems seems to be a really challenging task. In this paper, we present a deep learning-based architecture for sentiment analysis to automatically predict the sentiment of reviews, which are considered as explanations of recommendations. It consists of two instances of the prediction model, one with the Long Short-Term Memory (LSTM) method and the other with the Gated Recurrent Unit (GRU) method. We evaluate their performance on one real-world dataset from Amazon and compare them with one state-of-the-art method. The experimental results show that our methods perform better than the baseline approach.
引用
收藏
页码:452 / 456
页数:5
相关论文
共 50 条
  • [1] An explainable machine learning model for sentiment analysis of online reviews
    Mrabti, Soufiane El
    EL-Mekkaoui, Jaouad
    Hachmoud, Adil
    Lazaar, Mohamed
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 302
  • [2] Sentiment Analysis of Movie Reviews Based on Sentiment Dictionary and Deep Learning Models
    Liu, Caihong
    Liu, Changhui
    [J]. 2023 THE 6TH INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA 2023, 2023, : 144 - 148
  • [3] Symbolic Versus Deep Learning Techniques for Explainable Sentiment Analysis
    Muhammad, Shamsuddeen Hassan
    Brazdil, Pavel
    Jorge, Alipio
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I, 2023, 14115 : 415 - 427
  • [4] Sentiment Analysis of Consumer Reviews Using Deep Learning
    Iqbal, Amjad
    Amin, Rashid
    Iqbal, Javed
    Alroobaea, Roobaea
    Binmahfoudh, Ahmed
    Hussain, Mudassar
    [J]. SUSTAINABILITY, 2022, 14 (17)
  • [5] Sentiment Analysis of Product Reviews using Deep Learning
    Panthati, Jagadeesh
    Bhaskar, Jasmine
    Ranga, Tarun Kumar
    Challa, Manish Reddy
    [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 2408 - 2414
  • [6] Deep Learning Based Sentiment Analysis On COVID-19 Public Reviews
    Mengistie, Tajebe Tsega
    Kumar, Deepak
    [J]. 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 444 - 449
  • [7] Deep learning-based method for sentiment analysis for patients' drug reviews
    Al-Hadhrami, Sena
    Vinko, Tamas
    Al-Hadhrami, Tawfik
    Saeed, Faisal
    Qasem, Sultan Noman
    [J]. PEERJ COMPUTER SCIENCE, 2024, 10
  • [8] Sentiment Analysis Based on Urdu Reviews Using Hybrid Deep Learning Models
    Singh, Neha
    Jaiswal, Umesh Chandra
    [J]. APPLIED COMPUTER SYSTEMS, 2023, 28 (02) : 258 - 265
  • [9] Sentiment Analysis: Predicting Product Reviews for E-Commerce Recommendations Using Deep Learning and Transformers
    Bellar, Oumaima
    Baina, Amine
    Ballafkih, Mostafa
    [J]. MATHEMATICS, 2024, 12 (15)
  • [10] Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning
    Yang, Li
    Li, Ying
    Wang, Jin
    Sherratt, R. Simon
    [J]. IEEE ACCESS, 2020, 8 : 23522 - 23530