Covariant Star Product for Exterior Differential Forms on Symplectic Manifolds

被引:0
|
作者
McCurdy, Shannon [1 ]
Zumino, Bruno [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
DEFORMATION-THEORY; QUANTIZATION;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
After a brief description of the Z-graded differential Poisson algebra, we Introduce a covariant star product for exterior differential forms and give an explicit expression for it up to second order in the deformation parameter h, in the case of symplectic manifolds. The graded differential Poisson algebra endows the manifold with a connection, not necessarily torsion-free, and places upon the connection various constraints
引用
收藏
页码:204 / 214
页数:11
相关论文
共 50 条
  • [1] COVARIANT STAR PRODUCT ON SYMPLECTIC AND POISSON SPACE-TIME MANIFOLDS
    Chaichian, M.
    Oksanen, M.
    Tureanu, A.
    Zet, G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (18-19): : 3765 - 3796
  • [2] AN EXTERIOR CALCULUS FOR EXACT SYMPLECTIC-MANIFOLDS
    FRESCURA, FAM
    LUBCZONOK, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (03) : 1413 - 1425
  • [3] Noncommutative gauge theory using a covariant star product defined between Lie-valued differential forms
    Chaichian, M.
    Oksanen, M.
    Tureanu, A.
    Zet, G.
    PHYSICAL REVIEW D, 2010, 81 (08)
  • [4] Traces for star products on symplectic manifolds
    Gutt, S
    Rawnsley, J
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (1-2) : 12 - 18
  • [5] THE WEINSTEIN CONJECTURE IN PRODUCT OF SYMPLECTIC MANIFOLDS
    丁岩峭
    胡建勋
    Acta Mathematica Scientia(English Series), 2016, 36 (05) : 1245 - 1261
  • [6] Lagrangian product tori in symplectic manifolds
    Chekanov, Yuri
    Schlenk, Felix
    COMMENTARII MATHEMATICI HELVETICI, 2016, 91 (03) : 445 - 475
  • [7] THE WEINSTEIN CONJECTURE IN PRODUCT OF SYMPLECTIC MANIFOLDS
    Ding, Yanqiao
    Hu, Jianxun
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (05) : 1245 - 1261
  • [8] Stochastic analysis on product manifolds: Dirichlet operators on differential forms
    Albeverio, S
    Daletskii, A
    Kondratiev, Y
    JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (02) : 280 - 316
  • [9] DIFFERENTIAL OPERATORS IN EXTERIOR ALGEBRAS AND EXTERIOR DIFFERENTIAL FORMS OF AN ALGEBRA
    ROBY, N
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1977, 49 (01): : 9 - 14
  • [10] COVARIANT DIFFERENTIAL OF TENSORIAL FORMS
    VONRANDOW, R
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (172P): : 583 - +