Applying the hierarchical linear model to longitudinal data

被引:5
|
作者
Walters, Ryan W. [1 ]
Hoffman, Lesa [2 ]
机构
[1] Creighton Univ, Omaha, NE 68178 USA
[2] Univ Kansas, Lawrence, KS 66045 USA
来源
CULTURA Y EDUCACION | 2017年 / 29卷 / 03期
关键词
longitudinal; hierarchical linear model; random effects; within-person change;
D O I
10.1080/11356405.2017.1367168
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Educational researchers and school administrators frequently evaluate academic outcomes collected from cross-sectional sampling designs with overt nested structures, such as when students are nested within schools. More recently, interest has focused on the longitudinal collection of academic outcomes to evaluate a student's growth across time. In a longitudinal context, the repeatedly measured academic outcomes are nested within a student. Proper analysis of longitudinal data requires the hierarchical linear model to quantify the extra correlations within students created by the nested sampling structure. In this article, we introduce the hierarchical linear model used to quantify and predict between-student differences in a repeatedly measured continuous maths achievement outcome. This introduction is presented as a conversation representative of those we have frequently with individuals who lack statistical training in hierarchical linear models for longitudinal data. Specifically, we cover why repeated-measures ANOVA may not always be appropriate, how the hierarchical linear model can be used to quantify between-student differences in change and how student- and occasion-level predictors can be properly modelled and interpreted.
引用
收藏
页码:666 / 701
页数:36
相关论文
共 50 条
  • [1] Analysis of longitudinal data using the hierarchical linear model
    Snijders, T
    [J]. QUALITY & QUANTITY, 1996, 30 (04) : 405 - 426
  • [2] Analysis of longitudinal data with hierarchical linear models
    Goellner, Richard
    Gollwitzer, Mario
    Heider, Jens
    Zaby, Alexandra
    Schroeder, Annette
    [J]. ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE, 2010, 39 (03): : 179 - 188
  • [3] Analyzing longitudinal rating data: A three-level hierarchical linear model
    Gao, SY
    Hussey, D
    [J]. SOCIAL WORK RESEARCH, 1999, 23 (04) : 258 - 269
  • [4] A Hierarchical Rater Model for Longitudinal Data
    Casabianca, Jodi M.
    Junker, Brian W.
    Nieto, Ricardo
    Bond, Mark A.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2017, 52 (05) : 576 - 592
  • [5] Investigation of Longitudinal Data Analysis Hierarchical Linear Model and Latent Growth Model Using a Longitudinal Nursing Home Dataset
    Shin, Juh Hyun
    Shin, In-Soo
    [J]. RESEARCH IN GERONTOLOGICAL NURSING, 2019, 12 (06) : 275 - +
  • [6] Analysis of longitudinal data: Application of hierarchical linear models
    Keller, F
    [J]. ZEITSCHRIFT FUR KLINISCHE PSYCHOLOGIE UND PSYCHOTHERAPIE, 2003, 32 (01): : 51 - 61
  • [7] A NONLINEAR HIERARCHICAL MODEL FOR LONGITUDINAL DATA ON MANIFOLDS
    Hanik, Martin
    Hege, Hans-Christian
    von Tycowicz, Christoph
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [8] APPLYING A SPATIOTEMPORAL MODEL FOR LONGITUDINAL CARDIAC IMAGING DATA
    George, Brandon
    Denney, Thomas, Jr.
    Gupta, Himanshu
    Dell'Italia, Louis
    Aban, Inmaculada
    [J]. ANNALS OF APPLIED STATISTICS, 2016, 10 (01): : 527 - 548
  • [9] Model Selection with the Linear Mixed Model for Longitudinal Data
    Ryoo, Ji Hoon
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (04) : 598 - 624
  • [10] A Hierarchical Model for Time Dependent Multivariate Longitudinal Data
    Alfo, Marco
    Maruotti, Antonello
    [J]. DATA ANALYSIS AND CLASSIFICATION, 2010, : 271 - 279