A multi-parameter Generalized Farlie-Gumbel-Morgenstern bivariate copula family via Bernstein polynomial

被引:11
|
作者
Susam, Selim Orhun [1 ]
机构
[1] Munzur Univ, Dept Econometr, Tunceli, Turkey
来源
关键词
Bernstein polynomial; Copula; Kendall's tau; FGM copula;
D O I
10.15672/hujms.993698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are proposing a flexible method for constructing a bivariate generalized Farlie-Gumbel-Morgenstern (G-FGM) copula family. The method is mainly developed around the function phi(t) (t is an element of [0, 1]), where phi is the generator of the G-FGM copula. The proposed construction method has useful advantages. The first of which is the direct relationship between the phi function and Kendall's tau. The second advantage is the possibility of constructing a multi-parameter G-FGM copula which allows us to better harmonize empirical instruction with the model. The construction method is illustrated by three real data examples.
引用
收藏
页码:618 / 631
页数:14
相关论文
共 50 条
  • [1] Generalized Farlie-Gumbel-Morgenstern Copulas
    Kolesarova, Anna
    Mesiar, Radko
    Saminger-Platz, Susanne
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, IPMU 2018, PT I, 2018, 853 : 244 - 252
  • [2] Reliability characteristics of Farlie-Gumbel-Morgenstern family of bivariate distributions
    Gupta, Ramesh C.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (08) : 2342 - 2353
  • [3] DEPENDENCE PROPERTIES OF ITERATED GENERALIZED BIVARIATE FARLIE-GUMBEL-MORGENSTERN DISTRIBUTIONS
    KOTZ, S
    JOHNSON, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (04): : 277 - 280
  • [4] ON CONCOMITANTS OF BIVARIATE FARLIE-GUMBEL-MORGENSTERN DISTRIBUTIONS
    BuHamra, Sana
    Ahsanullah, M.
    PAKISTAN JOURNAL OF STATISTICS, 2013, 29 (04): : 453 - 466
  • [5] Extended Farlie-Gumbel-Morgenstern Bivariate Bilal Distribution
    Irshad, M. R.
    Maya, R.
    Arun, S. P.
    JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2022, 23 (02) : 497 - 516
  • [6] Extended Farlie-Gumbel-Morgenstern Bivariate Bilal Distribution
    M. R. Irshad
    R. Maya
    S. P. Arun
    Journal of the Indian Society for Probability and Statistics, 2022, 23 : 497 - 516
  • [7] FARLIE-GUMBEL-MORGENSTERN BIVARIATE DENSITIES - ARE THEY APPLICABLE IN HYDROLOGY
    LONG, D
    KRZYSZTOFOWICZ, R
    STOCHASTIC HYDROLOGY AND HYDRAULICS, 1992, 6 (01): : 47 - 54
  • [8] Constant Dividend Barrier in a Risk Model with a Generalized Farlie-Gumbel-Morgenstern Copula
    Hélène Cossette
    Etienne Marceau
    Fouad Marri
    Methodology and Computing in Applied Probability, 2011, 13 : 487 - 510
  • [9] SOME GENERALIZED FARLIE-GUMBEL-MORGENSTERN DISTRIBUTIONS
    JOHNSON, NL
    KOTZ, S
    COMMUNICATIONS IN STATISTICS, 1975, 4 (05): : 415 - 427
  • [10] A note on generalized Farlie-Gumbel-Morgenstern copulas
    Pathak A.K.
    Vellaisamy P.
    Journal of Statistical Theory and Practice, 2016, 10 (1) : 40 - 58