Charge storage mechanism of α-MnO2 in protic and aprotic ionic liquid electrolytes

被引:19
|
作者
Lindberg, S. [1 ]
Jeschke, S. [1 ]
Jankowski, P. [5 ,6 ]
Abdelhamid, M. [3 ]
Brousse, T. [2 ,4 ]
Le Bideau, J. [2 ,4 ]
Johansson, P. [1 ]
Matic, A. [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Univ Nantes, Inst Mat Jean Rouxel, CNRS, UMR 6502, F-44322 Nantes 3, France
[3] Uppsala Univ, Angstrom Lab, Dept Chem, Box 538, S-75121 Uppsala, Sweden
[4] CNRS FR 3459, Reseau Stockage Electrochim Energie, F-80039 Amiens, France
[5] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
[6] Warsaw Univ Technol, Fac Chem, PL-00664 Warsaw, Poland
关键词
MnO2; Protic; Ionic liquid; Hybrid; Supercapacitor; COSMO-RS; MNO2; ENERGY; APPROXIMATION; ELECTRODES; PK(A);
D O I
10.1016/j.jpowsour.2020.228111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we have investigated the charge storage mechanism of MnO2 electrodes in ionic liquid electrolytes. We show that by using an ionic liquid with a cation that has the ability to form hydrogen bonds with the active material (MnO2) on the surface of the electrode, a clear faradaic contribution is obtained. This situation is found for ionic liquids with cations that have a low pKa, i.e. protic ionic liquids. For a protic ionic liquid, the specific capacity at low scan rate rates can be explained by a densely packed layer of cations that are in a standing geometry, with a proton directly interacting through a hydrogen bond with the surface of the active material in the electrode. In contrast, for aprotic ionic liquids there is no interaction and only a double layer contribution to the charge storage is observed. However, by adding an alkali salt to the aprotic ionic liquid, a faradaic contribution is obtained from the insertion of Li+ into the surface of the MnO2 electrode. No effect can be observed when Li+ is added to the protic IL, suggesting that a densely packed cation layer in this case prevent Li-ions from reaching the active material surface.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A study on charge storage mechanism of α-MnO2 by occupying tunnels with metal cations (Ba2+, K+)
    Zhai, Dengyun
    Li, Baohua
    Xu, Chengjun
    Du, Hongda
    He, Yanbing
    Wei, Chunguang
    Kang, Feiyu
    JOURNAL OF POWER SOURCES, 2011, 196 (18) : 7860 - 7867
  • [32] Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode:: Effects of physisorbed water and proton conduction
    Ghaemi, M.
    Ataherian, F.
    Zolfaghari, A.
    Jafari, S. M.
    ELECTROCHIMICA ACTA, 2008, 53 (14) : 4607 - 4614
  • [33] Cobalt hexacyanoferrate/MnO2 nanocomposite for asymmetrical supercapacitors with enhanced electrochemical performance and its charge storage mechanism
    Song, Zhaoxia
    Liu, Wei
    Zhou, Quan
    Zhang, Li
    Zhang, Zheng
    Liu, Hongda
    Du, Jiaqi
    Chen, Junlin
    Liu, Guichang
    Zhao, Zhongfu
    JOURNAL OF POWER SOURCES, 2020, 465
  • [34] Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes
    Yuan, Changzhou
    Su, Linghao
    Gao, Bo
    Zhang, Xiaogang
    ELECTROCHIMICA ACTA, 2008, 53 (24) : 7039 - 7047
  • [35] BEHAVIOR OF MNO2 CATHODES IN NONAQUEOUS ELECTROLYTES
    RUCH, J
    SCHMOEDE, P
    KATRYNIOK, D
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (11) : C468 - C468
  • [36] Stability of λ-MnO2 in various aqueous electrolytes
    Sun, Weiwei
    Xia, Xi
    1600, Hunan Light Industry Research Institute, China (30):
  • [37] MECHANISM OF REDUCTION OF MNO2
    ABDULAZIM, AA
    KOLTA, GA
    ASKAR, MH
    AFIFI, SE
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1977, 258 (04): : 625 - 631
  • [38] RECHARGEABILITY OF BETA-MNO2 ELECTRODES IN APROTIC ELECTROLYTES
    KHODAREV, ON
    FILIMONOV, BP
    EREISKAYA, GP
    IVANOV, VV
    SOVIET ELECTROCHEMISTRY, 1991, 27 (08): : 922 - 925
  • [39] Engineering the Electrochemical Capacitive Properties of Microsupercapacitors Based on Graphene Quantum Dots/MnO2 Using Ionic Liquid Gel Electrolytes
    Shen, Baoshou
    Lang, Junwei
    Guo, Ruisheng
    Zhang, Xu
    Yan, Xingbin
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (45) : 25378 - 25389
  • [40] Charge storage in the PANI-α-MnO2 polymer-nanocomposite system
    Misnon, Izan Izwan
    Jose, Rajan
    MATERIALS TODAY-PROCEEDINGS, 2021, 41 : 513 - 519