Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps

被引:17
|
作者
Habeck, Michael [1 ,2 ]
机构
[1] Max Planck Inst Biophys Chem, Stat Inverse Problems Biophys, Gottingen, Germany
[2] Univ Gottingen, Feiix Bernstein Inst Math Stat Biosci, Gottingen, Germany
关键词
cryo-EM; modeling; Bayesian inference; Markov chain Monte Carlo; inferential structure determination; MACROMOLECULAR STRUCTURE DETERMINATION; MOLECULAR ARCHITECTURE; PROTEIN ASSEMBLIES; ATOMIC-STRUCTURE; DENSITY MAPS; RESOLUTION; REFINEMENT; SPLICEOSOME; MOVEMENTS; DYNAMICS;
D O I
10.3389/fmolb.2017.00015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A growing array of experimental techniques allows us to characterize the three-dimensional structure of large biological assemblies at increasingly higher resolution. In addition to X-ray crystallography and nuclear magnetic resonance in solution, new structure determination methods such cryo-electron microscopy (cryo-EM), crosslinking/mass spectrometry and solid-state NMR have emerged. Often it is not sufficient to use a single experimental method, but complementary data need to be collected by using multiple techniques. The integration of all datasets can only be achieved by computational means. This article describes Inferential structure determination, a Bayesian approach to integrative modeling of biomolecular complexes with hybrid structural data. I will introduce probabilistic models for cryo-EM maps and outline Markov chain Monte Carlo algorithms for sampling model structures from the posterior distribution. I will focus on rigid and flexible modeling with cryo-EM data and discuss some of the computational challenges of Bayesian inference in the context of biomolecular modeling.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Bayesian reweighting of biomolecular structural ensembles using heterogeneous cryo-EM maps with the cryoENsemble method
    Wlodarski, Tomasz
    Streit, Julian O.
    Mitropoulou, Alkistis
    Cabrita, Lisa D.
    Vendruscolo, Michele
    Christodoulou, John
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Automated atomic modeling in cryo-EM maps
    Singh, Arunima
    NATURE METHODS, 2024, 21 (05) : 749 - 749
  • [3] GemSpot allows modeling of ligands in cryo-EM maps
    Arunima Singh
    Nature Methods, 2020, 17 : 656 - 656
  • [4] GemSpot allows modeling of ligands in cryo-EM maps
    Singh, Arunima
    NATURE METHODS, 2020, 17 (07) : 656 - 656
  • [5] Bayesian cryo-EM Refinement
    Blau, Christian
    Bock, Lars
    Kutzner, Carsten
    Vaiana, Andrea
    Grubmuller, Helmut
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 470A - 470A
  • [6] Cryo-EM of dynamic molecular assemblies
    Subramaniam, Sriram
    JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2017, 74 : 46 - 46
  • [7] AI-based methods for biomolecular structure modeling for Cryo-EM
    Farheen, Farhanaz
    Terashi, Genki
    Zhu, Han
    Kihara, Daisuke
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2025, 90
  • [8] Practical Considerations for Atomistic Structure Modeling with Cryo-EM Maps
    Kim, Doo Nam
    Gront, Dominik
    Sanbonmatsu, Karissa Y.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (05) : 2436 - 2442
  • [9] GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps
    Robertson, Michael J.
    van Zundert, Gydo C. P.
    Borrelli, Kenneth
    Skiniotis, Georgios
    STRUCTURE, 2020, 28 (06) : 707 - +
  • [10] De Novo modeling in cryo-EM density maps with Pathwalking
    Chen, Muyuan
    Baldwin, Philip R.
    Ludtke, Steven J.
    Baker, Matthew L.
    JOURNAL OF STRUCTURAL BIOLOGY, 2016, 196 (03) : 289 - 298