ON THE DENSITY OF LAGUERRE FUNCTIONS IN SOME BANACH FUNCTION SPACES

被引:0
|
作者
Fernandes, Claudio [1 ,2 ]
Karlovych, Oleksiy [1 ,2 ]
Valente, Marcio [1 ,2 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicaoes Novamath, P-2829516 Caparica, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Caparica, Portugal
来源
关键词
Laguerre functions; Banach function space; rearrangement-invariant space; variable Lebesgue space; LEBESGUE;
D O I
10.54379/JIASF-2022-2-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda > 0 and Phi(lambda) := {phi(1,lambda), phi(2,lambda), ...} be the system of dilated Laguerre functions. We show that if L-1 (R+) boolean AND L-infinity(R+) is embedded into a separable Banach function space X(R+), then the linear span of Phi(lambda) is dense in X(R+). This implies that the linear span of Phi(lambda) is dense in every separable rearrangement-invariant space X(R+) and in every separable variable Lebesgue space L-p(.)(R+).
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条