Approximate formulations for 0-1 knapsack sets

被引:30
|
作者
Bienstock, Daniel [1 ]
机构
[1] Columbia Univ, Dept IEOR, New York, NY 10027 USA
关键词
integer programming; approximation algorithms; lift-and-project;
D O I
10.1016/j.orl.2007.09.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that for each 0 < epsilon <= 1 there exists an extended formulation for the knapsack problem, of size polynomial in the number of variables, whose value is at most (1 + epsilon) times the value of the integer program. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:317 / 320
页数:4
相关论文
共 50 条
  • [1] Exact and approximate algorithms for discounted {0-1} knapsack problem
    He, Yi-Chao
    Wang, Xi-Zhao
    He, Yu-Lin
    Zhao, Shu-Liang
    Li, Wen-Bin
    [J]. INFORMATION SCIENCES, 2016, 369 : 634 - 647
  • [2] Fast Polynomial Time Approximate Solution for 0-1 Knapsack Problem
    Wang, Zhengyuan
    Zhang, Hui
    Li, Yali
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [3] Approximate and exact solution methods for the hyperbolic 0-1 knapsack problem
    Billionnet, A
    [J]. INFOR, 2002, 40 (02) : 97 - 110
  • [4] An FPTAS for the Volume Computation of 0-1 Knapsack Polytopes Based on Approximate Convolution
    Ando, Ei
    Kijima, Shuji
    [J]. ALGORITHMICA, 2016, 76 (04) : 1245 - 1263
  • [5] An FPTAS for the Volume Computation of 0-1 Knapsack Polytopes Based on Approximate Convolution
    Ei Ando
    Shuji Kijima
    [J]. Algorithmica, 2016, 76 : 1245 - 1263
  • [6] Reoptimizing the 0-1 knapsack problem
    Archetti, Claudia
    Bertazzi, Luca
    Speranza, M. Grazia
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (17) : 1879 - 1887
  • [7] ALGORITHM FOR 0-1 KNAPSACK PROBLEM
    LAURIERE, M
    [J]. MATHEMATICAL PROGRAMMING, 1978, 14 (01) : 1 - 10
  • [8] COLLAPSING 0-1 KNAPSACK PROBLEM
    POSNER, ME
    GUIGNARD, M
    [J]. MATHEMATICAL PROGRAMMING, 1978, 15 (02) : 155 - 161
  • [9] An FPTAS for the Volume Computation of 0-1 Knapsack Polytopes Based on Approximate Convolution Integral
    Ando, Ei
    Kijima, Shuji
    [J]. ALGORITHMS AND COMPUTATION, ISAAC 2014, 2014, 8889 : 376 - 386
  • [10] A HYBRID OF ROUGH SETS AND GENETIC ALGORITHMS FOR SOLVING THE 0-1 MULTIDIMENSIONAL KNAPSACK PROBLEM
    Yang, Hsu-Hao
    Wang, Ming-Tsung
    Yang, Chung-Han
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2013, 9 (09): : 3537 - 3548