STACKING SEISMIC DATA BASED ON PRINCIPAL COMPONENT ANALYSIS

被引:0
|
作者
Wu, Juan [1 ]
Bai, Min [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Resources & Environm, Zhengzhou 450045, Henan, Peoples R China
来源
JOURNAL OF SEISMIC EXPLORATION | 2018年 / 27卷 / 04期
基金
中国国家自然科学基金;
关键词
seismic imaging; stacking; principal component analysis; low rank approximation; NOISE ATTENUATION; VELOCITY ANALYSIS; MODE DECOMPOSITION; SEISLET TRANSFORM; DOMAIN; REDUCTION; RECONSTRUCTION; INTERPOLATION; INVERSION; REGULARIZATION;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional equal-weight seismic stacking method cannot obtain optimal performance when the ambient noise is extremely strong. We propose applying a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. We use both synthetic and field data examples to demonstrate the performance of the presented method.
引用
收藏
页码:331 / 348
页数:18
相关论文
共 50 条
  • [1] Application of Principal Component Analysis in Weighted Stacking of Seismic Data
    Xie, Jianyong
    Chen, Wei
    Zhang, Dong
    Zu, Shaohuan
    Chen, Yangkang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) : 1213 - 1217
  • [2] Expression of Concern: Fast principal component analysis for stacking seismic data
    Wu, Juan
    Bai, Min
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2019, 16 (05) : 1012 - 1012
  • [3] RETRACTION: Fast principal component analysis for stacking seismic data (Retraction of Vol 15, Pg 295, 2018)
    Wu, Juan
    Bai, Min
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2020, 17 (04) : 789 - 789
  • [4] Seismic Data Strong Noise Attenuation Based on Diffusion Model and Principal Component Analysis
    Peng, Junheng
    Li, Yong
    Liao, Zhangquan
    Wang, Xuben
    Yang, Xingyu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [5] Seismic data interpretation using the Hough transform and principal component analysis
    Orozco-del-Castillo, M. G.
    Ortiz-Aleman, C.
    Martin, R.
    Avila-Carrera, R.
    Rodriguez-Castellanos, A.
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2011, 8 (01) : 61 - 73
  • [6] Classification of Hyperspectral Data Based on Principal Component Analysis
    Yi, Baolin
    Li, Weiwei
    Du, Jian
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (09): : 3771 - 3777
  • [7] Random Noise Suppression Algorithm for Seismic Signals Based on Principal Component Analysis
    Yuan-Jia Ma
    Ming-Yue Zhai
    [J]. Wireless Personal Communications, 2018, 102 : 653 - 665
  • [8] Random Noise Suppression Algorithm for Seismic Signals Based on Principal Component Analysis
    Ma, Yuan-Jia
    Zhai, Ming-Yue
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (02) : 653 - 665
  • [9] Hyperspectral data compression based upon the principal component analysis
    Minkin, A. S.
    Nikolaeva, O., V
    Russkov, A. A.
    [J]. COMPUTER OPTICS, 2021, 45 (02) : 235 - +
  • [10] NMR Data Compression Method Based on Principal Component Analysis
    Ding, Yejiao
    Xie, Ranhong
    Zou, Youlong
    Guo, Jiangfeng
    [J]. APPLIED MAGNETIC RESONANCE, 2016, 47 (03) : 297 - 307