Proof of universality of the Bessel kernel for chiral matrix models in the microscopic limit

被引:20
|
作者
Nishigaki, S
机构
[1] Niels Bohr Institute, DK-2100 Copenhagen Ø
关键词
random matrix model; orthogonal polynomial; universality; correlation function; 1/N expansion; energy level statistics; critical phenomena; QCD;
D O I
10.1016/0370-2693(96)01006-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove the universality of correlation functions of chiral complex matrix models in the microscopic limit (N --> infinity, z --> 0, Nz = fixed) which magnifies the crossover region around the origin of the eigenvalue distribution. The proof exploits the fact that the three-term difference equation for orthogonal polynomials reduces into a universal second-order differential (Bessel) equation in the microscopic limit.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条