Deconvolving multivariate kernel density estimates from contaminated associated observations

被引:9
|
作者
Masry, E [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
关键词
associated processes; asymptotic normality; deconvolution of multivariate probability densities; quadratic-mean convergence;
D O I
10.1109/TIT.2003.818415
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the estimation of the multivariate probability density function f (x(1),...,x(p)) of X-1,...,X-p of a stationary positively or negatively associated ((PA or (NA)) random process {X-i}(i=1)(infinity) from noisy observations. Both ordinary smooth and super smooth noise are considered. Quadratic mean and asymptotic normality results are established.
引用
收藏
页码:2941 / 2952
页数:12
相关论文
共 50 条