Automatic Classification of Sleep/Wake Stages Using Two-Step System

被引:0
|
作者
Zoubek, Lukas [1 ]
Chapotot, Florian [2 ]
机构
[1] Univ Ostrava, Dept Informat & Commun Technol, Ceskobratrska 16, CZ-70103 Ostrava, Czech Republic
[2] Univ Chicago, Dept Med, Chicago, IL 60637 USA
关键词
decision making; diagnosis; medical applications; pattern recognition; signal processing;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents application of an automatic classification system on 53 animal polysomnographic recordings. A two-step automatic system is used to score the recordings into three traditional stages: wake, NREM sleep and REM sleep. In the first step of the analysis, monitored signals are analyzed using artifact identification strategy and artifact-free signals are selected. Then. 30sec epochs are classified according to relevant features extracted from available signals using artificial neural networks. The overall classification accuracy reached by the presented classification system exceeded 95%, when analyzed 53 polysomnographic recordings.
引用
收藏
页码:106 / +
页数:3
相关论文
共 50 条
  • [1] A two-step automatic sleep stage classification method with dubious range detection
    Sousa, Teresa
    Cruz, Aniana
    Khalighi, Sirvan
    Pires, Gabriel
    Nunes, Urbano
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 59 : 42 - 53
  • [2] Feature selection for sleep/wake stages classification using data driven methods
    Zoubek, Lukas
    Charbonnier, Sylvie
    Lesecq, Suzanne
    Buguete, Alain
    Chapotot, Florian
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2007, 2 (03) : 171 - 179
  • [3] Automatic text summarization using two-step sentence extraction
    Jung, WC
    Ko, YJ
    Seo, JY
    [J]. INFORMATION RETRIEVAL TECHNOLOGY, 2005, 3411 : 71 - 81
  • [4] Two-Step Vehicle Classification System for Traffic Monitoring in the Philippines
    Celso, Rodrigo N., II
    Ting, Zachary B.
    Del Carmen, Dale Joshua R.
    Cajote, Rhandley D.
    [J]. PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 2028 - 2033
  • [5] Automatic sleep stages classification using multi-level fusion
    Hyungjik Kim
    Seung Min Lee
    Sunwoong Choi
    [J]. Biomedical Engineering Letters, 2022, 12 : 413 - 420
  • [6] Automatic sleep stages classification using multi-level fusion
    Kim, Hyungjik
    Lee, Seung Min
    Choi, Sunwoong
    [J]. BIOMEDICAL ENGINEERING LETTERS, 2022, 12 (04) : 413 - 420
  • [7] SVM for automatic rodent sleep-wake classification
    Shantilal
    Donohue, Kevin D.
    O'Hara, Bruce F.
    [J]. PROCEEDINGS IEEE SOUTHEASTCON 2008, VOLS 1 AND 2, 2008, : 581 - +
  • [8] Automatic Measurement System of the Space Charge Distribution by a Two-Step Deconvolution
    Hyun-Cheol Jung
    Hyung-Gyu Kim
    Tae-Ill Choi
    Seung Hwangbo
    [J]. Journal of Electrical Engineering & Technology, 2019, 14 : 2049 - 2055
  • [9] Automatic Measurement System of the Space Charge Distribution by a Two-Step Deconvolution
    Jung, Hyun-Cheol
    Kim, Hyung-Gyu
    Choi, Tae-Ill
    Hwangbo, Seung
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (05) : 2049 - 2055
  • [10] A Two-Step Cascade Classification Method
    Silva, Eunelson J.
    Britto, Alceu S., Jr.
    Oliveira, Luiz. S.
    Enembreck, Fabricio
    Sabourin, Robert
    Koerich, Alessandro L.
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 573 - 580