Remarks on the Prandtl boundary layer

被引:3
|
作者
Ding Yutao [1 ,2 ]
机构
[1] Acad Sinica, Inst Math, AMSS, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100864, Peoples R China
关键词
Prandtl equations; NAVIER-STOKES EQUATION; ZERO-VISCOSITY LIMIT; ANALYTIC SOLUTIONS; HALF-SPACE; POSEDNESS; EXISTENCE;
D O I
10.1016/j.jmaa.2011.11.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent result of Gerard-Varet and Dormy (2010) [4], they established ill-posedness for the Cauchy problem of the linearized Prandtl equation around non-monotic special solution which is independent of x and satisfies the heat equation. In Guo and Nguyen (2010) [5] and Gerard-Varet and Nguyen (2010) [6], some nonlinear ill-posedness were established with this counterexample. Then it is natural to consider the problem that does this linear ill-posedness happen whenever the non-degenerate critical points appear. In this paper, we concern the linearized Prandtl equation around general stationary solutions with non-degenerate critical points depending on x which could be considered as the time-periodic solutions and show some ill-posedness. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:412 / 419
页数:8
相关论文
共 50 条
  • [1] REMARKS ON THE NUMERICAL TREATMENT OF PRANDTL BOUNDARY-LAYER EQUATIONS
    ANSORGE, R
    BLANCK, ML
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1988, 39 (01): : 65 - 83
  • [2] On the steady Prandtl boundary layer expansions
    Chen Gao
    Liqun Zhang
    Science China Mathematics, 2023, 66 : 1993 - 2020
  • [3] The continuation problem for the prandtl boundary layer
    V. V. Kuznetsov
    Differential Equations, 2000, 36 : 998 - 1002
  • [4] PRANDTL BOUNDARY LAYER EQUATION FOR SPACE
    HOEHNKE, HJ
    MATHEMATISCHE NACHRICHTEN, 1967, 35 (5-6) : 349 - &
  • [5] On the steady Prandtl boundary layer expansions
    Gao, Chen
    Zhang, Liqun
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (09) : 1993 - 2020
  • [6] On the steady Prandtl boundary layer expansions
    Chen Gao
    Liqun Zhang
    ScienceChina(Mathematics), 2023, 66 (09) : 1993 - 2020
  • [7] The continuation problem for the Prandtl boundary layer
    Kuznetsov, VV
    DIFFERENTIAL EQUATIONS, 2000, 36 (07) : 998 - 1002
  • [8] On the Existence of a Prandtl Boundary Layer Near a Corner
    V. V. Kuznetsov
    Differential Equations, 2002, 38 : 830 - 838
  • [9] Existence and singularities for the Prandtl boundary layer equations
    Caflisch, RE
    Sammartino, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 (11-12): : 733 - 744
  • [10] On the existence of a Prandtl boundary layer near a corner
    Kuznetsov, VV
    DIFFERENTIAL EQUATIONS, 2002, 38 (06) : 830 - 838