Nonparametric Bayesian models for a spatial covariance

被引:13
|
作者
Reich, Brian J. [1 ]
Fuentes, Montserrat [1 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
关键词
Covariance estimation; Dirichlet process prior; Particulate matter; Spectral density; DAILY MORTALITY; AIR-POLLUTION;
D O I
10.1016/j.stamet.2011.01.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 50 条
  • [1] Bayesian nonparametric covariance regression
    Fox, Emily B.
    Dunson, David B.
    Airoldi, Edoardo M.
    [J]. Journal of Machine Learning Research, 2015, 16 : 2501 - 2542
  • [2] Bayesian Nonparametric Covariance Regression
    Fox, Emily B.
    Dunson, David B.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 2501 - 2542
  • [3] Bayesian Nonstationary and Nonparametric Covariance Estimation for Large Spatial Data (with Discussion)
    Kidd, Brian
    Katzfuss, Matthias
    [J]. BAYESIAN ANALYSIS, 2022, 17 (01): : 291 - 351
  • [4] Sensitivity analysis of Bayesian nonparametric spatial crash frequency models
    Li, Yihua
    Gill, Gurdiljot Singh
    Cheng, Wen
    Singh, Mankirat
    Zhang, Yongping
    Kwong, Jerry
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 53 (12) : 6326 - 6344
  • [5] BAYESIAN NONPARAMETRIC LANGUAGE MODELS
    Chang, Ying-Lan
    Chien, Jen-Tzung
    [J]. 2012 8TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING, 2012, : 188 - 192
  • [6] Nonparametric spatial covariance functions: Estimation and testing
    Bjornstad, ON
    Falck, W
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2001, 8 (01) : 53 - 70
  • [7] Nonparametric spatial covariance functions: Estimation and testing
    Ottar N. BjØrnstad
    Wilhelm Falck
    [J]. Environmental and Ecological Statistics, 2001, 8 : 53 - 70
  • [8] A tutorial on Bayesian nonparametric models
    Gershman, Samuel J.
    Blei, David M.
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (01) : 1 - 12
  • [9] ON MODELS OF SPATIAL COVARIANCE
    WATKINS, AJ
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 13 (04) : 473 - 481
  • [10] Bayesian inference of spatial covariance parameters
    Pardo-Igúzquiza, E
    [J]. MATHEMATICAL GEOLOGY, 1999, 31 (01): : 47 - 65