Identification of light sources using machine learning

被引:49
|
作者
You, Chenglong [1 ]
Quiroz-Juarez, Mario A. [2 ]
Lambert, Aidan [1 ]
Bhusal, Narayan [1 ]
Dong, Chao [1 ]
Perez-Leija, Armando [3 ]
Javaid, Amir [1 ]
Leon-Montiel, Roberto de J. [2 ]
Magana-Loaiza, Omar S. [1 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Quantum Photon Lab, Baton Rouge, LA 70803 USA
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Apartado Postal 70-543, Mexico City 04510, DF, Mexico
[3] Max Born Inst, Max Born Str 2A, D-12489 Berlin, Germany
基金
美国国家科学基金会;
关键词
PHOTON STATISTICS; QUANTUM;
D O I
10.1063/1.5133846
中图分类号
O59 [应用物理学];
学科分类号
摘要
The identification of light sources represents a task of utmost importance for the development of multiple photonic technologies. Over the last decades, the identification of light sources as diverse as sunlight, laser radiation, and molecule fluorescence has relied on the collection of photon statistics or the implementation of quantum state tomography. In general, this task requires an extensive number of measurements to unveil the characteristic statistical fluctuations and correlation properties of light, particularly in the low-photon flux regime. In this article, we exploit the self-learning features of artificial neural networks and the naive Bayes classifier to dramatically reduce the number of measurements required to discriminate thermal light from coherent light at the single-photon level. We demonstrate robust light identification with tens of measurements at mean photon numbers below one. In terms of accuracy and number of measurements, the methods described here dramatically outperform conventional schemes for characterization of light sources. Our work has important implications for multiple photonic technologies such as light detection and ranging, and microscopy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine Learning Identification of Organic Compounds Using Visible Light
    Bikku, Thulasi
    Fritz, Ruben A.
    Colon, Yamil J.
    Herrera, Felipe
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (10): : 2407 - 2414
  • [2] Landslide identification using machine learning
    Wang, Haojie
    Zhang, Limin
    Yin, Kesheng
    Luo, Hongyu
    Li, Jinhui
    [J]. GEOSCIENCE FRONTIERS, 2021, 12 (01) : 351 - 364
  • [3] Landslide identification using machine learning
    Haojie Wang
    Limin Zhang
    Kesheng Yin
    Hongyu Luo
    Jinhui Li
    [J]. Geoscience Frontiers, 2021, 12 (01) : 351 - 364
  • [4] Identification of chimera using machine learning
    Ganaie, M. A.
    Ghosh, Saptarshi
    Mendola, Naveen
    Tanveer, M.
    Jalan, Sarika
    [J]. CHAOS, 2020, 30 (06)
  • [5] Nanoscale light element identification using machine learning aided STEM-EDS
    Kim, Hong-Kyu
    Ha, Heon-Young
    Bae, Jee-Hwan
    Cho, Min Kyung
    Kim, Juyoung
    Han, Jeongwoo
    Suh, Jin-Yoo
    Kim, Gyeung-Ho
    Lee, Tae-Ho
    Jang, Jae Hoon
    Chun, Dongwon
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Nanoscale light element identification using machine learning aided STEM-EDS
    Hong-Kyu Kim
    Heon-Young Ha
    Jee-Hwan Bae
    Min Kyung Cho
    Juyoung Kim
    Jeongwoo Han
    Jin-Yoo Suh
    Gyeung-Ho Kim
    Tae-Ho Lee
    Jae Hoon Jang
    Dongwon Chun
    [J]. Scientific Reports, 10
  • [7] Using machine learning for particle identification in ALICE
    Graczykowski, Lukasz Kamil
    Jakubowska, Monika
    Deja, Kamil Rafal
    Kabus, Maja
    [J]. JOURNAL OF INSTRUMENTATION, 2022, 17 (07):
  • [8] ESHOPPING SCAM IDENTIFICATION USING MACHINE LEARNING
    Anupriya, K.
    Gayathri, R.
    Balaanand, M.
    Sivaparthipan, C. B.
    [J]. IEEE INTERNATIONAL CONFERENCE ON SOFT-COMPUTING AND NETWORK SECURITY (ICSNS 2018), 2018, : 208 - 214
  • [9] Internet Traffic Identification using Machine Learning
    Erman, Jeffrey
    Mahanti, Anirban
    Arlitt, Martin
    [J]. GLOBECOM 2006 - 2006 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, 2006,
  • [10] IDENTIFICATION OF CODE SMELL USING MACHINE LEARNING
    Jesudoss, A.
    Maneesha, S.
    durga, T. Lakshmi naga
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 54 - 58