Plastid biotechnology for crop production: present status and future perspectives

被引:57
|
作者
Clarke, Jihong Liu [1 ]
Daniell, Henry [2 ]
机构
[1] Bioforsk Norwegian Inst Agr & Environm Res, Plant Hlth & Protect Div, N-1432 As, Norway
[2] Univ Cent Florida, Dept Mol Biol & Microbiol, Coll Med, Orlando, FL 32816 USA
关键词
Plastid engineering; Food security; Climate change; Cereal crops; Chloroplast genome; STABLE CHLOROPLAST TRANSFORMATION; CAROTENOID BIOSYNTHESIS; TRANSGENIC CHLOROPLASTS; GENETIC-TRANSFORMATION; MATERNAL INHERITANCE; GENOME SEQUENCES; FOREIGN PROTEINS; EXPRESSION; TOBACCO; DNA;
D O I
10.1007/s11103-011-9767-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 50 条
  • [1] Plastid biotechnology for crop production: present status and future perspectives
    Jihong Liu Clarke
    Henry Daniell
    [J]. Plant Molecular Biology, 2011, 76 : 211 - 220
  • [2] Erratum to: Plastid biotechnology for crop production: present status and future perspectives
    Jihong Liu Clarke
    Henry Daniell
    [J]. Plant Molecular Biology, 2011, 77 : 203 - 203
  • [3] Plastid biotechnology for crop production: present status and future perspectives (vol 76, pg 211, 2011)
    Clarke, Jihong Liu
    Daniell, Henry
    [J]. PLANT MOLECULAR BIOLOGY, 2011, 77 (1-2) : 203 - 203
  • [4] Biotechnology - New perspectives for future crop production
    Oelck, MM
    [J]. PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON IN VITRO CULTURE AND HORTICULTURAL BREEDING, 2001, (560): : 565 - 565
  • [5] Biodiesel production from camelina oil: Present status and future perspectives
    Stamenkovic, Olivera S.
    Gautam, Kshipra
    Singla-Pareek, Sneh L.
    Dhankher, Om P.
    Djalovic, Ivica G.
    Kostic, Milan D.
    Mitrovic, Petar M.
    Pareek, Ashwani
    Veljkovic, Vlada B.
    [J]. FOOD AND ENERGY SECURITY, 2023, 12 (01):
  • [6] In vitro embryo production (IVEP) in camelids: Present status and future perspectives
    Wani, Nisar Ahmad
    [J]. REPRODUCTIVE BIOLOGY, 2021, 21 (01)
  • [7] Adoption of CRISPR-Cas for crop production: present status and future prospects
    Akanmu, Akinlolu Olalekan
    Asemoloye, Michael Dare
    Marchisio, Mario Andrea
    Babalola, Olubukola Oluranti
    [J]. PEERJ COMPUTER SCIENCE, 2024, 12
  • [8] Adoption of CRISPR-Cas for crop production: present status and future prospects
    Akanmu, Akinlolu Olalekan
    Asemoloye, Michael Dare
    Marchisio, Mario Andrea
    Babalola, Olubukola Oluranti
    [J]. PEERJ, 2024, 12
  • [9] Present status and future perspectives of intestinal transplantation
    Pascher, Andreas
    Kohler, Sven
    Neuhaus, Peter
    Pratschke, Johann
    [J]. TRANSPLANT INTERNATIONAL, 2008, 21 (05) : 401 - 414
  • [10] Present Status and Future Perspectives of the NEXT Experiment
    Gomez Cadenas, J. J.
    Alvarez, V.
    Borges, F. I. G.
    Carcel, S.
    Castel, J.
    Cebrian, S.
    Cervera, A.
    Conde, C. A. N.
    Dafni, T.
    Dias, T. H. V. T.
    Diaz, J.
    Egorov, M.
    Esteve, R.
    Evtoukhovitch, P.
    Fernandes, L. M. P.
    Ferrario, P.
    Ferreira, A. L.
    Freitas, E. D. C.
    Gehman, V. M.
    Gil, A.
    Goldschmidt, A.
    Gomez, H.
    Gonzalez-Diaz, D.
    Gutierrez, R. M.
    Hauptman, J.
    Hernando Morata, J. A.
    Herrera, D. C.
    Iguaz, F. J.
    Irastorza, I. G.
    Jinete, M. A.
    Labarga, L.
    Laing, A.
    Liubarsky, I.
    Lopes, J. A. M.
    Lorca, D.
    Losada, M.
    Luzon, G.
    Mari, A.
    Martin-Albo, J.
    Martinez, A.
    Miller, T.
    Moiseenko, A.
    Monrabal, F.
    Monserrate, M.
    Monteiro, C. M. B.
    Mora, F. J.
    Moutinho, L. M.
    Munoz Vidal, J.
    Natal da Luz, H.
    Navarro, G.
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2014, 2014