Quantitative approximation theorems for elliptic operators

被引:3
|
作者
Bagby, T
Bos, L
Levenberg, N
机构
[1] UNIV CALGARY, DEPT MATH & STAT, CALGARY, AB T2N 1N4, CANADA
[2] UNIV AUCKLAND, DEPT MATH & STAT, AUCKLAND, NEW ZEALAND
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jath.1996.0029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L(D) be an elliptic linear partial differential operator with constant coefficients and only highest order terms. For compact sets K subset of R(N) whose complements are John domains we prove a quantitative Runge theorem: if a function f satisfies L(D)f = 0 on a fixed neighborhood of K, we estimate the sup-norm distance from f to the polynomial solutions of degree at most n. The proof utilizes a two-constants theorem for solutions to elliptic equations. We then deduce versions of Jackson and Bernstein theorems for elliptic operators. (C) 1996 Academic Press, Inc.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 50 条