Alternative Ni-Impregnated Mixed Ionic-Electronic Conducting Anode for SOFC Operation at High Fuel Utilization

被引:17
|
作者
Futamura, S. [1 ]
Tachikawa, Y. [1 ,2 ,3 ]
Matsuda, J. [2 ,4 ]
Lyth, S. M. [4 ]
Shiratori, Y. [1 ,2 ,3 ,4 ]
Taniguchi, S. [2 ,4 ,5 ]
Sasaki, K. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Kyushu Univ, Dept Hydrogen Energy, Nishi Ku, Fukuoka 8190395, Japan
[2] Kyushu Univ, Ctr Coevolut Social Syst, Nishi Ku, Fukuoka 8190395, Japan
[3] Kyushu Univ, Next Generat Fuel Cell Res Ctr NEXT FC, Nishi Ku, Fukuoka 8190395, Japan
[4] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka 8190395, Japan
[5] Kyushu Univ, Int Res Ctr Hydrogen Energy, Nishi Ku, Fukuoka 8190395, Japan
基金
日本科学技术振兴机构;
关键词
DOPED SRTIO3; YSZ ANODES; PERFORMANCE; CELLS; DEGRADATION; EVOLUTION;
D O I
10.1149/2.0071710jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Redox-stable anodes are developed for zirconia-based electrolyte-supported SOFCs in order to improve the durability against fuel supply interruption and for higher fuel utilization, as an alternative to the conventional Ni-YSZ cermet. GDC (Ce0.9Gd0.1O2) is utilized as a mixed ionic-electronic conductor (MIEC), and combined with LST (Sr0.9La0.1TiO3) as an electronic conductor. Ni catalyst nanoparticles are incorporated via impregnation. The electrochemical characteristics of SOFC single cells using these anode materials are investigated in humidified H-2 at 800 degrees C. The stability against redox cycling and under high fuel utilization is analyzed and discussed. Ni-impregnated anodes with dispersed Ni catalyst nanoparticles on conducting oxide LST-GDC backbones exhibit lower anode non-ohmic overvoltage, and improve I-V performance. These anodes also show better redox stability compared to conventional anodes because of the isolation of Ni catalysts, preventing their agglomeration. Moreover, the co-impregnation of Ni catalysts and GDC nanoparticles further improves electrochemical characteristics due to a decrease in anode ohmic (IR) loss and non-ohmic overvoltage. This anode shows comparable I-V performance to conventional anodes for typical humidified hydrogen fuels, and is a promising redox-stable alternative for application at high fuel utilization. (C) The Author(s) 2017. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.
引用
收藏
页码:F3055 / F3063
页数:9
相关论文
共 28 条
  • [1] IT-SOFC supported on mixed oxygen ionic-electronic conducting composites
    Serra, J. M.
    Vert, V. B.
    Buechler, O.
    Meulenberg, W. A.
    Buchkremer, H. P.
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (12) : 3867 - 3875
  • [2] Mixed ionic-electronic YSZ/Ni composite for SOFC anodes with high electrical conductivity
    Fonseca, FC
    de Florio, DZ
    Esposito, V
    Traversa, E
    Muccillo, ENS
    Muccillo, R
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (02) : A354 - A360
  • [3] Performance analysis of mixed ionic-electronic conducting cathodes in anode supported cells
    Endler-Schuck, Cornelia
    Leonide, Andre
    Weber, Andre
    Uhlenbruck, Sven
    Tietz, Frank
    Ivers-Tiffee, Ellen
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7257 - 7262
  • [4] Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells
    Kulkarni, A.
    Ciacchi, F. T.
    Giddey, S.
    Munnings, C.
    Badwal, S. P. S.
    Kimpton, J. A.
    Fini, D.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (24) : 19092 - 19102
  • [5] Electrochemical performance of mixed ionic-electronic conducting oxides as anodes for solid oxide fuel cell
    Wang, Shizhong
    Jiang, Yi
    Zhang, Yahong
    Li, Wenzhao
    Yan, Jingwang
    Lu, Zigui
    [J]. Solid State Ionics, 1999, 120 (01): : 75 - 84
  • [6] Electrochemical performance of mixed ionic-electronic conducting oxides as anodes for solid oxide fuel cell
    Wang, SZ
    Jiang, Y
    Zhang, YH
    Li, WZ
    Yan, JW
    Lu, ZG
    [J]. SOLID STATE IONICS, 1999, 120 (1-4) : 75 - 84
  • [7] High-temperature oxygen nonstoichiometry determination in mixed ionic-electronic conducting oxides
    I. A. Starkov
    S. F. Bychkov
    A. P. Nemudry
    [J]. Inorganic Materials, 2013, 49 : 839 - 843
  • [8] Alternative SOFC Anode Materials with Ion- and Electron-Conducting Backbones for Higher Fuel Utilization
    Futamura, S.
    Tachikawa, Y.
    Matsuda, J.
    Lyth, S. M.
    Shiratori, Y.
    Taniguchi, S.
    Sasaki, K.
    [J]. SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 1179 - 1187
  • [9] High-Temperature Oxygen Nonstoichiometry Determination in Mixed Ionic-Electronic Conducting Oxides
    Starkov, I. A.
    Bychkov, S. F.
    Nemudry, A. P.
    [J]. INORGANIC MATERIALS, 2013, 49 (08) : 839 - 843
  • [10] Fabrication of Low Ni-containing SOFC Anode Using Mixed Ionic and Electronic Conductors
    Kikuchi, R.
    Minami, T.
    Takagaki, A.
    Sugawara, T.
    Oyama, S. T.
    [J]. SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 1201 - 1210