Nonlocal Conservation Law in a Free Submerged Jet

被引:1
|
作者
Gaifullin, A. M. [1 ]
Zhvik, V. V. [1 ]
机构
[1] Cent Aerohydrodynam Inst, Zhukovskii 140180, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
conservation law; submerged jet; asymptotics; invariant; ASYMPTOTICS;
D O I
10.1134/S0965542521100043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A free axisymmetric nonswirling submerged jet of viscous incompressible fluid is considered. For large Reynolds numbers, the unknown constant in the asymptotic Landau-Rumer-Gol'dshtik-Yavorsky solution to the Navier-Stokes equations that describes the far jet field is determined. A similar constant in Loitsyanskii's solution in the boundary layer approximation is found. These constants are expressed in terms of the distribution of velocity in the jet source using a nonlocal conservation law.
引用
收藏
页码:1630 / 1639
页数:10
相关论文
共 50 条
  • [1] Nonlocal Conservation Law in a Free Submerged Jet
    A. M. Gaifullin
    V. V. Zhvik
    Computational Mathematics and Mathematical Physics, 2021, 61 : 1630 - 1639
  • [2] ON THE INSTABILITY OF A NONLOCAL CONSERVATION LAW
    Bouharguane, Afaf
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03): : 419 - 426
  • [3] Stability of a front for a nonlocal conservation law
    Asselah, A
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 219 - 234
  • [4] Analytical solution for the submerged free jet
    Oved, Avishai
    Haustein, Herman D.
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [5] On a stochastic nonlocal conservation law in a bounded domain
    Lv, Guangying
    Duan, Jinqiao
    Gao, Hongjun
    Wu, Jiang-Lun
    BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (06): : 718 - 746
  • [6] A nonlocal conservation law with nonlinear "Radiation" inhomogeneity
    Di Francesco, Marco
    Fellner, Klemens
    Liu, Hailiang
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2008, 5 (01) : 1 - 23
  • [7] Solutions for a nonlocal conservation law with fading memory
    Chen, Gui-Qiang
    Christoforou, Cleopatra
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (12) : 3905 - 3915
  • [8] CONTROL OF A SCALAR CONSERVATION LAW WITH A NONLOCAL VELOCITY
    Coron, Jean-Michel
    Wang, Zhiqiang
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 1023 - 1030
  • [9] Controllability for a scalar conservation law with nonlocal velocity
    Coron, Jean-Michel
    Wang, Zhiqiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) : 181 - 201
  • [10] A NEW APPROACH FOR A NONLOCAL, NONLINEAR CONSERVATION LAW
    Du, Qiang
    Kamm, James R.
    Lehoucq, R. B.
    Parks, Michael L.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (01) : 464 - 487