LogCAD: An Efficient and Robust Model for Log-Based Conformal Anomaly Detection

被引:0
|
作者
Liu, Chunbo [1 ]
Liang, Mengmeng [2 ]
Hou, Jingwen [2 ]
Gu, Zhaojun [1 ]
Wang, Zhi [3 ]
机构
[1] Civil Aviat Univ China, Informat Secur Evaluat Ctr, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Coll Comp Sci & Technol, Tianjin 300300, Peoples R China
[3] Nankai Univ, Coll Cyber Sci, Tianjin 300350, Peoples R China
基金
美国国家科学基金会;
关键词
Anomaly detection - Classification based methods - Conformal anomaly - Cyber-attacks - Learning methods - Learning models - Logfile - Robust modeling - Semi-structured - Systems operation;
D O I
10.1155/2022/5822124
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Log files are usually semistructured files that record the historical operation information of systems or devices. Researchers often find anomalies by analyzing logs, so as to identify system operation faults and cyberattacks. Traditional classification-based methods, especially deep learning methods, can effectively solve the problem of static log anomaly detection. However, when addressing dynamic unstable logs caused by concept drift and noise, the performance of those methods decreased significantly, and false positives are prone to occur. Retraining model is a choice to solve the log instability problem, but this will greatly increase the computational complexity for deep learning models. The log-based conformal anomaly detection (LogCAD) builds a confidence evaluation mechanism for multiple labels, which can achieve good detection results by making collaborative decisions based on multiple weak classifiers without deep learning. Moreover, LogCAD can be easily extended to dynamic unstable logs. It incrementally updates the trained model with conformal detection results of new samples. Experimental results show that LogCAD can achieve excellent detection results for both dynamic unstable logs and static stable logs. Compared with LogRobust and other deep learning models, it has higher efficiency and wider application scope.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Robust Log-Based Anomaly Detection on Unstable Log Data
    Zhang, Xu
    Xu, Yong
    Lin, Qingwei
    Qiao, Bo
    Zhang, Hongyu
    Dang, Yingnong
    Xie, Chunyu
    Yang, Xinsheng
    Cheng, Qian
    Li, Ze
    Chen, Junjie
    He, Xiaoting
    Yao, Randolph
    Lou, Jian-Guang
    Chintalapati, Murali
    Shen, Furao
    Zhang, Dongmei
    [J]. ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2019, : 807 - 817
  • [2] Log-Based Anomaly Detection With Robust Feature Extraction and Online Learning
    Han, Shangbin
    Wu, Qianhong
    Zhang, Han
    Qin, Bo
    Hu, Jiankun
    Shi, Xingang
    Liu, Linfeng
    Yin, Xia
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 2300 - 2311
  • [3] A robust Wide & Deep learning framework for log-based anomaly detection
    Niu, Weina
    Liao, Xuhan
    Huang, Shiping
    Li, Yudong
    Zhang, Xiaosong
    Li, Beibei
    [J]. APPLIED SOFT COMPUTING, 2024, 153
  • [4] Log-based Anomaly Detection Without Log Parsing
    Van-Hoang Le
    Zhang, Hongyu
    [J]. 2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 492 - 504
  • [5] Leveraging Log Instructions in Log-based Anomaly Detection
    Bogatinovski, Jasmin
    Madjarov, Gjorgji
    Nedelkoski, Sasho
    Cardoso, Jorge
    Kao, Odej
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (IEEE SCC 2022), 2022, : 321 - 326
  • [6] On the effectiveness of log representation for log-based anomaly detection
    Wu, Xingfang
    Li, Heng
    Khomh, Foutse
    [J]. EMPIRICAL SOFTWARE ENGINEERING, 2023, 28 (06)
  • [7] On the effectiveness of log representation for log-based anomaly detection
    Xingfang Wu
    Heng Li
    Foutse Khomh
    [J]. Empirical Software Engineering, 2023, 28
  • [8] Review on Log-Based Anomaly Detection Techniques
    Raut, Pooja
    Mishra, Akanksha
    Rao, Shreya
    Kawoor, Saloni
    Shelke, Sushila
    Deore, Mahendra
    Kumar, Vivek
    [J]. PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 893 - 906
  • [9] Transfer Log-based Anomaly Detection with Pseudo Labels
    Huang, Shaohan
    Liu, Yi
    Fung, Carol
    He, Rong
    Zhao, Yining
    Yang, Hailong
    Luan, Zhongzhi
    [J]. 2020 16TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT (CNSM), 2020,
  • [10] An unsupervised heterogeneous log-based framework for anomaly detection
    Hajamydeen, Asif Iqbal
    Udzir, Nur Izura
    Mahmod, Ramlan
    Abdul Ghani, Abdul Azim
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2016, 24 (03) : 1117 - 1134