Visual tracking achieved by adaptive sampling from hierarchical and parallel predictions

被引:0
|
作者
Shibata, Tomohiro [1 ]
Bando, Takashi [2 ]
Ishii, Shin [1 ,3 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Nara, Japan
[2] DENSO Corp, Kariya, Aichi, Japan
[3] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Because the inevitable ill-posedness exists in the visual information, the brain essentially needs some prior knowledge, prediction, or hypothesis to acquire a meaningful solution. From computational point of view, visual tracking is the real-time process of statistical spatiotemporal. filtering of target states from an image stream, and incremental Bayesian computation is one of the most important devices. To make Bayesian computation of the posterior density of state variables tractable for any types of probability distribution, Particle Filters (PFs) have been often employed in the real-time vision area. In this paper, we briefly review incremental Bayesian computation and PFs for visual tracking, indicate drawbacks of PFs, and then propose our framework, in which hierarchical and parallel predictions are integrated by adaptive sampling to achieve appropriate balancing of tracking accuracy and robustness. Finally, we discuss the proposed model from the viewpoint of neuroscience.
引用
收藏
页码:604 / +
页数:2
相关论文
共 50 条
  • [1] Hierarchical Estimation for Adaptive Visual Tracking
    Yun, SeokMin
    Na, JinHee
    Kang, Woo-Sung
    Choi, JinYoung
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3133 - 3136
  • [2] ADAPTIVE SAMPLING FOR BAYESIAN VISUAL TRACKING
    Kawamoto, Kazuhiko
    [J]. 2008 WORLD AUTOMATION CONGRESS PROCEEDINGS, VOLS 1-3, 2008, : 203 - 208
  • [3] A hierarchical feature fusion framework for adaptive visual tracking
    Makris, Alexandros
    Kosmopoulos, Dimitrios
    Perantonis, Stavros
    Theodoridis, Sergios
    [J]. IMAGE AND VISION COMPUTING, 2011, 29 (09) : 594 - 606
  • [4] Adaptive Hamiltonian MCMC sampling for robust visual tracking
    Wang, Fasheng
    Li, Xucheng
    Lu, Mingyu
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (11) : 13087 - 13106
  • [5] Adaptive Hamiltonian MCMC sampling for robust visual tracking
    Fasheng Wang
    Xucheng Li
    Mingyu Lu
    [J]. Multimedia Tools and Applications, 2017, 76 : 13087 - 13106
  • [6] ACSiamRPN: Adaptive Context Sampling for Visual Object Tracking
    Qin, Xiaofei
    Zhang, Yipeng
    Chang, Hang
    Lu, Hao
    Zhang, Xuedian
    [J]. ELECTRONICS, 2020, 9 (09) : 1 - 13
  • [7] Hierarchical Convolutional Features via Adaptive Selection for Visual Tracking
    Xiong Chang-zhen
    Che Man-qiang
    Ge Jin-peng
    [J]. ACTA PHOTONICA SINICA, 2019, 48 (03)
  • [8] Adaptive cascaded and parallel feature fusion for visual object tracking
    Jun Wang
    Sixuan Li
    Kunlun Li
    Qizhen Zhu
    [J]. The Visual Computer, 2024, 40 : 2119 - 2138
  • [9] Adaptive cascaded and parallel feature fusion for visual object tracking
    Wang, Jun
    Li, Sixuan
    Li, Kunlun
    Zhu, Qizhen
    [J]. VISUAL COMPUTER, 2024, 40 (03): : 2119 - 2138
  • [10] ACCURACY-BASED SAMPLING AND RECONSTRUCTION WITH ADAPTIVE MESHES FOR PARALLEL HIERARCHICAL TRIANGULATION
    TANAKA, HT
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 1995, 61 (03) : 335 - 350