Probiotics for the prevention of Clostridium-difficileassociated diarrhea in adults and children

被引:191
|
作者
Goldenberg, Joshua Z. [1 ,2 ]
Yap, Christina [3 ]
Lytvyn, Lyubov [4 ]
Lo, Calvin Ka-Fung [5 ]
Beardsley, Jennifer [6 ]
Mertz, Dominik [7 ]
Johnston, Bradley C. [8 ]
机构
[1] Bastyr Univ, Res Inst, Kenmore, WA USA
[2] Univ Technol Sydney, Australian Res Ctr Complementary & Integrat Med, Ultimo, Australia
[3] Bastyr Univ, San Diego, CA USA
[4] McMaster Univ, Dept Clin Epidemiol & Biostat, Hamilton, ON, Canada
[5] Univ British Columbia, Fac Med, Vancouver, BC, Canada
[6] Bastyr Univ, Kenmore, WA USA
[7] McMaster Univ, Div Infect Dis, Dept Med, Hamilton, ON, Canada
[8] Dalhousie Univ, Dept Community Hlth & Epidemiol, 5790 Univ Ave, Halifax, NS B3H 1V7, Canada
关键词
*Clostridium difficile; Anti-Bacterial Agents [*adverse effects; Diarrhea [microbiology; *prevention & control; Enterocolitis; Pseudomembranous; *complications; Probiotics [*therapeutic use; Randomized Controlled Trials as Topic; Adult; Child; Humans; ANTIBIOTIC-ASSOCIATED DIARRHEA; HELICOBACTER-PYLORI ERADICATION; RANDOMIZED CLINICAL-TRIAL; LACTOBACILLUS-ACIDOPHILUS CL1285; DIFFICILE-ASSOCIATED DIARRHEA; PLACEBO-CONTROLLED TRIAL; SACCHAROMYCES-BOULARDII; DOUBLE-BLIND; TRIPLE THERAPY; BIFIDOBACTERIUM-LACTIS;
D O I
10.1002/14651858.CD006095.pub4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Antibiotics can disturb gastrointestinal microbiota which may lead to reduced resistance to pathogens such as Clostridium difficile (C. difficile). Probiotics are live microbial preparations that, when administered in adequate amounts, may confer a health benefit to the host, and are a potential C. difficile prevention strategy. Recent clinical practice guidelines do not recommend probiotic prophylaxis, even though probiotics have the highest quality evidence among cited prophylactic therapies. Objectives To assess the efficacy and safety of probiotics for preventing C. difficile-associated diarrhea (CDAD) in adults and children. Search methods We searched PubMed, EMBASE, CENTRAL, and the Cochrane IBD Group Specialized Register from inception to 21 March 2017. Additionally, we conducted an extensive grey literature search. Selection criteria Randomized controlled (placebo, alternative prophylaxis, or no treatment control) trials investigating probiotics (any strain, any dose) for prevention of CDAD, or C. difficile infection were considered for inclusion. Data collection and analysis Two authors (independently and in duplicate) extracted data and assessed risk of bias. The primary outcome was the incidence of CDAD. Secondary outcomes included detection of C. difficile infection in stool, adverse events, antibiotic-associated diarrhea (AAD) and length of hospital stay. Dichotomous outcomes (e. g. incidence of CDAD) were pooled using a random-effects model to calculate the risk ratio (RR) and corresponding 95% confidence interval (95% CI). We calculated the number needed to treat for an additional beneficial outcome (NNTB) where appropriate. Continuous outcomes (e.g. length of hospital stay) were pooled using a random-effectsmodel to calculate themean difference and corresponding 95% CI. Sensitivity analyses were conducted to explore the impact ofmissing data on efficacy and safety outcomes. For the sensitivity analyses, we assumed that the event rate for those participants in the control group who had missing data was the same as the event rate for those participants in the control group who were successfully followed. For the probiotic group, we calculated effects using the following assumed ratios of event rates in those with missing data in comparison to those successfully followed: 1.5: 1, 2: 1, 3: 1, and 5: 1. To explore possible explanations for heterogeneity, a priori subgroup analyses were conducted on probiotic species, dose, adult versus pediatric population, and risk of bias as well as a post hoc subgroup analysis on baseline risk of CDAD (low 0% to 2%; moderate 3% to 5%; high > 5%). The overall quality of the evidence supporting each outcome was independently assessed using the GRADE criteria. Main results Thirty-nine studies (9955 participants) met the eligibility requirements for our review. Overall, 27 studies were rated as either high or unclear risk of bias. A complete case analysis (i. e. participants who completed the study) among trials investigating CDAD (31 trials, 8672 participants) suggests that probiotics reduce the risk of CDAD by 60%. The incidence of CDAD was 1.5% (70/4525) in the probiotic group compared to 4.0% (164/4147) in the placebo or no treatment control group (RR 0.40, 95% CI 0.30 to 0.52; GRADE = moderate). Twenty-two of 31 trials had missing CDAD data ranging from 2% to 45%. Our complete case CDAD results proved robust to sensitivity analyses of plausible and worst-plausible assumptions regarding missing outcome data and results were similar whether considering subgroups of trials in adults versus children, inpatients versus outpatients, different probiotic species, lower versus higher doses of probiotics, or studies at high versus low risk of bias. However, in a post hoc analysis, we did observe a subgroup effect with respect to baseline risk of developing CDAD. Trials with a baseline CDAD risk of 0% to 2% and 3% to 5% did not show any difference in risk but trials enrolling participants with a baseline risk of > 5% for developing CDAD demonstrated a large 70% risk reduction (interaction P value = 0.01). Among studies with a baseline risk > 5%, the incidence of CDAD in the probiotic group was 3.1% (43/1370) compared to 11.6% (126/1084) in the control group (13 trials, 2454 participants; RR 0.30, 95% CI 0.21 to 0.42; GRADE = moderate). With respect to detection of C. difficile in the stool pooled complete case results from15 trials (1214 participants) did not show a reduction in infection rates. C. difficile infection was 15.5% (98/633) in the probiotics group compared to 17.0% (99/ 581) in the placebo or no treatment control group (RR 0.86, 95% CI 0.67 to 1.10; GRADE = moderate). Adverse events were assessed in 32 studies (8305 participants) and our pooled complete case analysis indicates probiotics reduce the risk of adverse events by 17% (RR 0.83, 95% CI 0.71 to 0.97; GRADE = very low). In both treatment and control groups the most common adverse events included abdominal cramping, nausea, fever, soft stools, flatulence, and taste disturbance. Authors' conclusions Based on this systematic review and meta-analysis of 31 randomized controlled trials including 8672 patients, moderate certainty evidence suggests that probiotics are effective for preventing CDAD (NNTB = 42 patients, 95% CI 32 to 58). Our post hoc subgroup analyses to explore heterogeneity indicated that probiotics are effective among trials with a CDAD baseline risk > 5% (NNTB = 12; moderate certainty evidence), but not among trials with a baseline risk = 5% (low to moderate certainty evidence). Although adverse effects were reported among 32 included trials, there were more adverse events among patients in the control groups. The short-term use of probiotics appears to be safe and effective when used along with antibiotics in patients who are not immunocompromised or severely debilitated. Despite the need for further research, hospitalized patients, particularly those at high risk of CDAD, should be informed of the potential benefits and harms of probiotics.
引用
收藏
页数:211
相关论文
共 50 条
  • [1] PROBIOTICS FOR THE PREVENTION OF CLOSTRIDIUM-DIFFICILE ASSOCIATED DIARRHEA IN ADULTS AND CHILDREN
    Goldenberg, Joshua Z.
    Yap, Christina
    Lytvyn, Lyubov
    Lo, Calvin
    Beardsley, Jennifer
    Mertz, Dominik
    Johnston, Bradley
    GASTROENTEROLOGY, 2018, 154 (06) : S853 - S853
  • [2] Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children
    Goldenberg, Joshua Z.
    Ma, Stephanie S. Y.
    Saxton, Jane D.
    Martzen, Mark R.
    Vandvik, Per O.
    Thorlund, Kristian
    Guyatt, Gordon H.
    Johnston, Bradley C.
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2013, (05):
  • [3] PROBIOTICS FOR THE PREVENTION OF CLOSTRIDIUM DIFFICILE-ASSOCIATED DIARRHEA IN ADULTS AND CHILDREN
    Gaines, Chloe
    Moore, Jerrel
    GASTROENTEROLOGY NURSING, 2019, 42 (03) : 299 - 301
  • [4] Probiotics for the Prevention of Clostridium difficile-Associated Diarrhea
    Oscherwitz, Steven
    ANNALS OF INTERNAL MEDICINE, 2013, 158 (09) : 706 - 706
  • [5] Probiotics for the Prevention of Nosocomial Diarrhea in Children
    Hojsak, Iva
    Szajewska, Hania
    Canani, Roberto B.
    Guarino, Alfredo
    Indrio, Flavia
    Kolacek, Sanja
    Orel, Rok
    Shamir, Raanan
    Vandenplas, Yvan
    van Goudoever, Johannes B.
    Weizman, Zvi
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2018, 66 (01): : 3 - 9
  • [6] Probiotics for the prevention of anti biotic-associated diarrhea and Clostridium difficile diarrhea
    Katz, JA
    JOURNAL OF CLINICAL GASTROENTEROLOGY, 2006, 40 (03) : 249 - 255
  • [7] Probiotics in the prevention and treatment of acute infectious diarrhea in children
    Braegger, CP
    MONATSSCHRIFT KINDERHEILKUNDE, 2002, 150 (07) : 824 - +
  • [8] Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Children
    Szajewska, Hania
    Canani, Roberto Berni
    Guarino, Alfredo
    Hojsak, Iva
    Indrio, Flavia
    Kolacek, Sanja
    Orel, Rok
    Shamir, Raanan
    Vandenplas, Yvan
    van Goudoever, Johannes B.
    Weizman, Zvi
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2016, 62 (03): : 495 - 506
  • [9] The effect of probiotics on Clostridium difficile diarrhea
    Pochapin, M
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2000, 95 (01): : S11 - S13
  • [10] Probiotics and the Prevention of Antibiotic-Associated Diarrhea in Infants and Children
    Johnston, Bradley C.
    Goldenberg, Joshua Z.
    Parkin, Patricia C.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (14): : 1484 - 1485