Quenched tail estimate for the random walk in random scenery and in random layered conductance II

被引:3
|
作者
Deuschel, Jean-Dominique [1 ]
Fukushima, Ryoki [2 ,3 ]
机构
[1] Tech Univ Berlin, Inst Math, Berlin, Germany
[2] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
[3] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki, Japan
来源
关键词
random walk; random scenery; spectral dimension; random conductance model; layered media; INVARIANCE-PRINCIPLE; LARGE DEVIATIONS; LIFSHITZ TAIL; LIMIT-THEOREM; SURVIVAL; ASYMPTOTICS; MODEL;
D O I
10.1214/20-EJP478
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This is a continuation of our earlier work [Stochastic Processes and their Applications, 129(1), pp.102-128, 2019] on the random walk in random scenery and in random layered conductance. We complete the picture of upper deviation of the random walk in random scenery, and also prove a bound on lower deviation probability. Based on these results, we determine asymptotics of the return probability, a certain moderate deviation probability, and the Green function of the random walk in random layered conductance.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [1] Quenched tail estimate for the random walk in random scenery and in random layered conductance
    Deuschel, Jean-Dominique
    Fukushima, Ryoki
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (01) : 102 - 128
  • [2] A LONG-TIME TAIL FOR RANDOM-WALK IN RANDOM SCENERY
    DENHOLLANDER, F
    NAUDTS, J
    SCHEUNDERS, P
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) : 1527 - 1555
  • [3] The quenched limiting distributions of a one-dimensional random walk in random scenery
    Guillotin-Plantard, Nadine
    Hu, Yueyun
    Schapira, Bruno
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 7
  • [4] SCENERY RECONSTRUCTION FOR RANDOM WALK ON RANDOM SCENERY SYSTEMS
    Lakrec, Tsviqa
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2022, 248 (01) : 149 - 200
  • [5] Scenery reconstruction for random walk on random scenery systems
    Tsviqa Lakrec
    [J]. Israel Journal of Mathematics, 2022, 248 : 149 - 200
  • [6] Dynamic random walk in a random scenery
    Guillotin, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (02): : 231 - 234
  • [7] A note on random walk in random scenery
    Asselah, Amine
    Castell, Fabienne
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (02): : 163 - 173
  • [8] Annealed deviations of random walk in random scenery
    Gantert, Nina
    Koenig, Wolfgang
    Shi, Zhan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (01): : 47 - 76
  • [9] Moderate deviations for a random walk in random scenery
    Fleischmann, Klaus
    Moerters, Peter
    Wachtel, Vitali
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (10) : 1768 - 1802
  • [10] The extremes of a random scenery as seen by a random walk in a random environment
    Franke, Brice
    Saigo, Tatsuhiko
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (08) : 1025 - 1030