SAT(ID): Satisfiability of propositional logic extended with inductive definitions

被引:0
|
作者
Marien, Maarten [1 ]
Wittocx, Johan [1 ]
Denecker, Marc [1 ]
Bruynooghe, Maurice [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Louvain, Belgium
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate the satisfiability problem, SAT(ID), of an extension of propositional logic with inductive definitions. We demonstrate how to extend existing SAT solvers to become SAT(ID) solvers, and provide an implementation on top of MiniSat. We also report on a performance study, in which our implementation exhibits the expected benefits: full use of the underlying SAT solver's potential.
引用
收藏
页码:211 / +
页数:3
相关论文
共 50 条
  • [1] Reducing inductive definitions to propositional satisfiability
    Pelov, N
    Ternovska, E
    [J]. LOGIC PROGRAMMING, PROCEEDINGS, 2005, 3668 : 221 - 234
  • [2] Integrating inductive definitions in SAT
    Marien, Maarten
    Wittocx, Johan
    Denecker, Marc
    [J]. LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2007, 4790 : 378 - 392
  • [3] AN EXTENDED PROPOSITIONAL LOGIC
    Giaquinta, Mariano
    Modica, Giuseppe
    Soucek, Jiri
    [J]. BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2015, 10 (01): : 73 - 100
  • [4] EXAMINING THE SATISFIABILITY OF THE FORMULAS OF PROPOSITIONAL DYNAMIC LOGIC
    JANOWSKI, T
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1989, 349 : 536 - 536
  • [5] Symmetric Neural Networks and Propositional Logic Satisfiability
    Pinkas, Gadi
    [J]. NEURAL COMPUTATION, 1991, 3 (02) : 282 - 291
  • [6] Substitutional definition of satisfiability in classical propositional logic
    Belov, A
    Stachniak, Z
    [J]. THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, PROCEEDINGS, 2005, 3569 : 31 - 45
  • [7] On the Satisfiability and Validity Problems in the Propositional Godel Logic
    Guller, Dusan
    [J]. COMPUTATIONAL INTELLIGENCE, 2012, 399 : 211 - 227
  • [8] Planning for Temporally Extended Goals as Propositional Satisfiability
    Mattmueller, Robert
    Rintanen, Jussi
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 1966 - 1971
  • [9] Satisfiability in Boolean Logic (SAT problem) is polynomial
    Rybakov, Vladimir V.
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (05): : 667 - 671
  • [10] A logic of nonmonotone inductive definitions
    Denecker, Marc
    Ternovska, Eugenia
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2008, 9 (02)