Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure

被引:114
|
作者
de Koker, Nico P. [1 ]
Stixrude, Lars [1 ]
Karki, Bijaya B. [2 ,3 ]
机构
[1] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA
[2] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Dept Geol & Geophys, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.gca.2007.12.019
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We perform first principles molecular dynamics simulations of Mg2SiO4 liquid and crystalline forsterite. On compression by a factor of two, we find that the Gruneisen parameter of the liquid increases linearly from 0.6 to 1.2. Comparison of liquid and forsterite equations of state reveals a temperature-dependent density crossover at pressures of similar to 12-17 GPa. Along tile melting curve, which we calculate by integration of the Clapeyron equation, the density crossover occurs within the forsterite stability field at P = 13 GPa and T= 2550 K. The melting curve obtained from the root mean-square atomic displacement in forsterite using the Lindemann law fails to match experimental or calculated melting curves. We attribute this failure to the liquid structure that differs significantly from that of forsterite, and which changes markedly upon compression, with increases in the degree of polymerization and coordination. The mean Si coordination increases from 4 in the uncompressed system to 6 upon twofold compression. The self-diffusion coefficients increase with temperature and decrease monotonically with pressure, and are well described by the Arrhenian relation. We compare our equation of state to the available highpressure shock wave data for forsterite and wadsleyite. Our theoretical liquid Hugoniot is consistent with partial melting along the forsterite Hugoniot at pressures 150-170 GPa, and complete melting at 170 GPa. The wadsleyite Hugoniot is likely sub-liquidus at the highest experimental pressure to date (200 GPa). (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1427 / 1441
页数:15
相关论文
共 50 条
  • [1] Structure, thermodynamics and transport properties of Mg2SiO4 liquid under high pressure from molecular dynamics
    Adjaoud, O.
    Steinle-Neumann, G.
    Jahn, S.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A11 - A11
  • [2] Mg2SiO4 liquid under high pressure from molecular dynamics
    Adjaoud, Omar
    Steinle-Neumann, G.
    Jahn, Sandro
    CHEMICAL GEOLOGY, 2008, 256 (3-4) : 185 - 192
  • [3] THE LATTICE-DYNAMICS AND THERMODYNAMICS OF THE MG2SIO4 POLYMORPHS
    PRICE, GD
    PARKER, SC
    LESLIE, M
    PHYSICS AND CHEMISTRY OF MINERALS, 1987, 15 (02) : 181 - 190
  • [4] THERMODYNAMICS AND BEHAVIOR OF GAMMA-MG2SIO4 AT HIGH-PRESSURE - IMPLICATIONS FOR MG2SIO4 PHASE-EQUILIBRIUM
    CHOPELAS, A
    BOEHLER, R
    KO, T
    PHYSICS AND CHEMISTRY OF MINERALS, 1994, 21 (06) : 351 - 359
  • [5] Lattice dynamics of Mg2SiO4
    Lazewski, J
    Jochym, PT
    Parlinski, K
    Piekarz, P
    JOURNAL OF MOLECULAR STRUCTURE, 2001, 596 : 3 - 6
  • [6] HIGH PRESSURE MODIFICATION OF MG2SIO4 - CRYSTAL STRUCTURE AND CRYSTALLOCHEMICAL AND GEOPHYSICAL IMPLICATIONS
    MOORE, PB
    SMITH, JV
    NATURE, 1969, 221 (5181) : 653 - &
  • [7] Transport properties of Mg2SiO4 liquid at high pressure: Physical state of a magma ocean
    Adjaoud, O.
    Steinle-Neumann, G.
    Jahn, S.
    EARTH AND PLANETARY SCIENCE LETTERS, 2011, 312 (3-4) : 463 - 470
  • [8] SYNTHESIS OF MG2SIO4 WITH SPINEL STRUCTURE
    KAWAI, N
    ENDOH, S
    SAKATA, S
    PROCEEDINGS OF THE JAPAN ACADEMY, 1966, 42 (06): : 626 - &
  • [9] High-resolution 17O MAS NMR spectroscopy of forsterite (α-Mg2SiO4) wadsleyite (β-Mg2SiO4), and ringwoodite (γ-Mg2SiO4)
    Ashbrook, SE
    Berry, AJ
    Hibberson, WO
    Steuernagel, S
    Wimperis, S
    AMERICAN MINERALOGIST, 2005, 90 (11-12) : 1861 - 1870
  • [10] Diffusion and viscosity of Mg2SiO4 liquid at high pressure from first-principles simulations
    Ghosh, Dipta B.
    Karki, Bijaya B.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2011, 75 (16) : 4591 - 4600