Effect of short-term controlled atmospheres on the postharvest quality and sensory shelf life of red raspberry (Rubus idaeus L.)

被引:14
|
作者
Gonzalez-Orozco, Brianda D. [1 ]
Mercado-Silva, Edmundo M. [1 ]
Castano-Tostado, Eduardo [1 ]
Vazquez-Barrios, Ma. Estela [1 ]
Rivera-Pastrana, Dulce M. [1 ]
机构
[1] Univ Autonoma Queretaro, Fac Quim, Dept Invest & Posgrad Alimentos, Cerro Campanas SN, Queretaro 76010, Queretaro, Mexico
关键词
Short-term controlled atmospheres; raspberry; postharvest quality; sensory shelf life; DYNAMIC CONTROLLED-ATMOSPHERE; STRAWBERRY FRUIT; CARBON-DIOXIDE; STORAGE; VEGETABLES;
D O I
10.1080/19476337.2020.1758216
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Marketing of raspberries is limited by their short postharvest life under refrigerated storage (<14 days). Short-term controlled atmospheres have been found to be effective in increasing the storage life of different crops and providing a more sustainable alternative to maintain postharvest quality compared to a continuous controlled atmosphere (CA). In this work, the effect of short-term CA treatments: early (15% CO2, 10% O-2 for 3 days + air for 11 days) and intermediate (3 days in air +3 days 15% CO2, 10% O-2 + 8 days in air) versus continuous CA on the postharvest quality of red raspberry cv. "Adelita" was evaluated. Short-term CA treatments significantly reduced weight loss during the first 6 days of storage. Early CA fruit showed longer sensory shelf life (SSL) values, and improved color parameters during storage compared to control.
引用
收藏
页码:352 / 358
页数:7
相关论文
共 50 条
  • [1] Quality of red raspberry Rubus idaeus L. cultivars after storage in controlled and normal atmospheres
    Haffner, K
    Rosenfeld, HJ
    Skrede, G
    Wang, LX
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2002, 24 (03) : 279 - 289
  • [2] Postharvest Auxin and Methyl Jasmonate Effect on Anthocyanin Biosynthesis in Red Raspberry (Rubus idaeus L.)
    Moro, Lais
    Aymoto Hassimotto, Neuza Mariko
    Purgatto, Eduardo
    JOURNAL OF PLANT GROWTH REGULATION, 2017, 36 (03) : 773 - 782
  • [3] Postharvest Auxin and Methyl Jasmonate Effect on Anthocyanin Biosynthesis in Red Raspberry (Rubus idaeus L.)
    Laís Moro
    Neuza Mariko Aymoto Hassimotto
    Eduardo Purgatto
    Journal of Plant Growth Regulation, 2017, 36 : 773 - 782
  • [4] Sensory and instrumental analysis of eight genotypes of red raspberry (Rubus idaeus L.) fruits
    Aaby, Kjersti
    Skaret, Josefine
    Roen, Dag
    Sonsteby, Anita
    JOURNAL OF BERRY RESEARCH, 2019, 9 (03) : 483 - 498
  • [5] Red Raspberry (Rubus idaeus L.) Seed Oil: A Review
    Ispiryan, Audrone
    Viskelis, Jonas
    Viskelis, Pranas
    PLANTS-BASEL, 2021, 10 (05):
  • [6] The High-Quality Genome Sequencing and Analysis of Red Raspberry (Rubus idaeus L.)
    Zhang, Haopeng
    Li, Weihua
    Li, Guodong
    Liu, Jiaren
    Chen, Hongsheng
    Zhang, Chunpeng
    Zhao, Jinlu
    Zhang, Zhicheng
    Lv, Qiang
    Zhang, Yan
    Yang, Guohui
    Liu, Ming
    INTERNATIONAL JOURNAL OF GENOMICS, 2024, 2024
  • [7] In vitro plant regeneration of ‘Prelude’ red raspberry (Rubus idaeus L.)
    Wei Zhang
    Wenhao Dai
    In Vitro Cellular & Developmental Biology - Plant, 2023, 59 : 461 - 466
  • [8] Cane stabilization improves yield of red raspberry (Rubus idaeus L.)
    Vanden Heuvel, JE
    Sullivan, JA
    Proctor, JTA
    HORTSCIENCE, 2000, 35 (02) : 181 - 183
  • [9] Characterization of Red Raspberry (Rubus idaeus L.) Genotypes for Their Physicochemical Properties
    Tosun, M.
    Ercisli, S.
    Karlidag, H.
    Sengul, M.
    JOURNAL OF FOOD SCIENCE, 2009, 74 (07) : C575 - C579
  • [10] The genetic structure of red raspberry (Rubus idaeus L.) populations in Lithuania
    Patamsyte, Jolanta
    Kleizaite, Violeta
    Cesniene, Tatjana
    Rancelis, Vytautas
    Zvingila, Donatas
    CENTRAL EUROPEAN JOURNAL OF BIOLOGY, 2010, 5 (04): : 496 - 506