Two Architectures for Real-Time Sensor Data Streaming for Cloud Applications

被引:0
|
作者
Singh, Harsh V. P. [1 ]
Rizvi, Syed R. [1 ]
Mahmoud, Qusay H. [1 ]
机构
[1] Univ Ontario, Dept Elect Comp & Software Engn, Inst Technol, Oshawa, ON, Canada
关键词
Streaming; Real-time; Sensor data; Node [!text type='JS']JS[!/text; Websockets; Internet of Things;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents two simple, practical and scalable architectures which facilitate real-time sensor data streaming for cloud applications. Real-time sensor data is invaluable in applications where either the sensor or system state is time variant. Applications involving sensors typically push live data values to cloud based software applications that rely on live data feeds to aid real-time analytics, multi-user collaboration, processing, and re-transmission. The proposed architectures utilize the latest HTML5 WebSocket framework and NODE. JS API to facilitate transmission of real time sensor data. The strength of our architectures leverage vast ubiquitous computing resources available both on the cloud and at the client end to create a rapidly deployable, low-cost, and scalable real-time communication link.
引用
收藏
页码:133 / 138
页数:6
相关论文
共 50 条
  • [1] Real-Time Classification of Streaming Sensor Data
    Kasetty, Shashwati
    Stafford, Candice
    Walker, Gregory P.
    Wang, Xiaoyue
    Keogh, Eamonn
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL 1, PROCEEDINGS, 2008, : 149 - +
  • [2] Optimizing performance of Real-Time Big Data stateful streaming applications on Cloud
    Gupta, Amit
    Jain, Sushant
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 1 - 4
  • [3] Interactive Data Cleaning for Real-Time Streaming Applications
    Raeth, Timo
    Onah, Ngozichukwuka
    Sattler, Kai-Uwe
    [J]. WORKSHOP ON HUMAN-IN-THE-LOOP DATA ANALYTICS, HILDA 2023, 2023,
  • [4] Real-time anomaly detection in gas sensor streaming data
    Wu, Haibo
    Shi, Shiliang
    [J]. INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2021, 14 (01) : 81 - 88
  • [5] A Distributed Tree Data Structure For Real-Time OLAP On Cloud Architectures
    Dehne, F.
    Kong, Q.
    Rau-Chaplin, A.
    Zaboli, H.
    Zhou, R.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [6] A Spanning Tree based Data Collection for Real-Time Streaming Sensor Data
    Kim, Kyung Tae
    Park, Jong Chang
    Kim, Manyun
    Kim, Ung Mo
    Youn, Hee Yong
    [J]. 2014 IEEE 12TH INTERNATIONAL CONFERENCE ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING (DASC)/2014 IEEE 12TH INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTING (EMBEDDEDCOM)/2014 IEEE 12TH INTERNATIONAL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING (PICOM), 2014, : 202 - 207
  • [7] Architectures and Codecs for Real-Time Light Field Streaming
    Kovacs, Peter Tamas
    Zare, Alireza
    Balogh, Tibor
    Bregovic, Robert
    Gotchev, Atanas
    [J]. JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2017, 61 (01)
  • [8] Real-time surrogate-assisted preprocessing of streaming sensor data
    Debski, Roman
    Drezewski, Rafal
    [J]. COMPUTER NETWORKS, 2022, 219
  • [9] Scalable real-time OLAP on cloud architectures
    Dehne, F.
    Kong, Q.
    Rau-Chaplin, A.
    Zaboli, H.
    Zhou, R.
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2015, 79-80 : 31 - 41
  • [10] Real-time inverse distance weighting interpolation for streaming sensor data
    Liang, Qinghan
    Nittel, Silvia
    Whittier, John C.
    de Bruin, Sytze
    [J]. TRANSACTIONS IN GIS, 2018, 22 (05) : 1179 - 1204