Effect of Strain on Stripe Phases in the Quantum Hall Regime

被引:47
|
作者
Koduvayur, Sunanda P. [1 ,2 ]
Lyanda-Geller, Yuli [1 ,2 ]
Khlebnikov, Sergei [1 ,2 ]
Csathy, Gabor [1 ,2 ]
Manfra, Michael J. [1 ,2 ,3 ,4 ]
Pfeiffer, Loren N. [5 ]
West, Kenneth W. [5 ]
Rokhinson, Leonid P. [1 ,2 ]
机构
[1] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[5] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
HIGH LANDAU-LEVELS; 2-DIMENSIONAL ELECTRON LIQUID; WEAK MAGNETIC-FIELD; ANISOTROPIC TRANSPORT; DENSITY; STATES; SEMICONDUCTORS; TEMPERATURE; MECHANISMS; SYSTEMS;
D O I
10.1103/PhysRevLett.106.016804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Preferential orientation of the stripe phases in the quantum Hall (QH) regime has remained a puzzle since its discovery. We show experimentally and theoretically that the direction of high and low resistance of the two-dimensional (2D) hole gas in the QH regime can be controlled by an external strain. Depending on the sign of the in-plane shear strain, the Hartree-Fock energy of holes or electrons is minimized when the charge density wave (CDW) is oriented along the [110] or [1 (1) over bar0] directions. We suggest that shear strains due to internal electric fields in the growth direction are responsible for the observed orientation of CDW in pristine electron and hole samples.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Stripe formation in the fractional quantum Hall regime
    Lee, SY
    Scarola, VW
    Jain, JK
    PHYSICAL REVIEW LETTERS, 2001, 87 (25) : 256803/1 - 256803/4
  • [2] Resistivity anisotropy of quantum Hall stripe phases
    Sammon, M.
    Fu, X.
    Huang, Yi
    Zudov, M. A.
    Shklovskii, B., I
    Gardner, G. C.
    Watson, J. D.
    Manfra, M. J.
    Baldwin, K. W.
    Pfeiffer, L. N.
    West, K. W.
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [3] Stripe and bubble phases in quantum Hall systems
    Fogler, MM
    HIGH MAGNETIC FIELDS: APPLICATIONS IN CONDENSED MATTER PHYSICS AND SPECTROSCOPY, 2001, 595 : 98 - 138
  • [4] Quantum Hall stripe phases at integer filling factors
    Demler, E
    Wang, DW
    Das Sarma, S
    Halperin, BI
    SOLID STATE COMMUNICATIONS, 2002, 123 (6-7) : 243 - 250
  • [5] Reentrant insulating phases in the integer quantum Hall regime
    Knighton, Talbot
    Wu, Zhe
    Tarquini, Vinicio
    Huang, Jian
    Pfeiffer, L. N.
    West, K. W.
    PHYSICAL REVIEW B, 2014, 90 (16)
  • [6] SIZE EFFECT IN THE QUANTUM HALL REGIME
    ZHENG, HZ
    CHOI, KK
    TSUI, DC
    WEIMANN, G
    SURFACE SCIENCE, 1986, 170 (1-2) : 209 - 213
  • [7] JOSEPHSON EFFECT IN THE QUANTUM HALL REGIME
    MA, M
    ZYUZIN, AY
    EUROPHYSICS LETTERS, 1993, 21 (09): : 941 - 945
  • [8] Optical Hall Effect in the Integer Quantum Hall Regime
    Ikebe, Y.
    Morimoto, T.
    Masutomi, R.
    Okamoto, T.
    Aoki, H.
    Shimano, R.
    PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [9] Wigner crystal and bubble phases in graphene in the quantum Hall regime
    Zhang, C.-H.
    Joglekar, Yogesh N.
    PHYSICAL REVIEW B, 2007, 75 (24):
  • [10] Kondo effect of quantum dots in the quantum Hall regime
    Choi, MS
    Hwang, NY
    Yang, SRE
    PHYSICAL REVIEW B, 2003, 67 (24)