Quasi self-adjoint nonlinear wave equations

被引:30
|
作者
Ibragimov, N. H. [1 ]
Torrisi, M. [2 ]
Tracina, R. [2 ]
机构
[1] Blekinge Inst Technol, Dept Math & Sci, SE-37179 Karlskrona, Sweden
[2] Univ Catania, Dipartimento Matemat & Informat, I-95124 Catania, Italy
关键词
D O I
10.1088/1751-8113/43/44/442001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e. g. for constructing conservation laws associated with symmetries of the differential equation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] SELF-ADJOINT ACOUSTIC EQUATIONS WITH PROGRESSING WAVE SOLUTIONS
    TORRENCE, RJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (18): : 4107 - 4115
  • [2] Quasi Self-adjoint Coupled KdV-like Equations
    Ruggieri, Marianna
    Speciale, Maria Paola
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1220 - 1223
  • [3] Conservation laws for a class of quasi self-adjoint third order equations
    Gandarias, M. L.
    Bruzon, M. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (02) : 668 - 678
  • [4] Lagrangians for self-adjoint and non-self-adjoint equations
    He, Ji-Huan
    APPLIED MATHEMATICS LETTERS, 2013, 26 (03) : 373 - 375
  • [5] Self-adjoint wave equations for dynamical perturbations of self-gravitating fields
    Sarbach, O
    Heusler, M
    Brodbeck, O
    PHYSICAL REVIEW D, 2001, 63 (10):
  • [6] A Nonlinear Self-Adjoint Spectral Problem for Differential-Algebraic Equations
    A. A. Abramov
    K. Balla
    V. I. Ul'yanova
    L. F. Yukhno
    Differential Equations, 2003, 39 : 913 - 925
  • [7] Weak self-adjoint differential equations
    Gandarias, M. L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (26)
  • [8] Optimal control of self-adjoint nonlinear operator equations in Hilbert spaces
    El-Gebeily, M. A.
    Mordukhovich, B. S.
    Alshahrani, M. M.
    APPLICABLE ANALYSIS, 2014, 93 (01) : 210 - 222
  • [9] Nonlinear Self-Adjoint Classification of a Burgers-KdV Family of Equations
    Santos Sampaio, Julio Cesar
    Freire, Igor Leite
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [10] Oscillation of forced nonlinear second order self-adjoint difference equations
    Parhi, N
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (11): : 1611 - 1624