On higher index differential-algebraic equations in infinite dimensions

被引:6
|
作者
Trostorff, Sascha [1 ]
Waurick, Marcus [2 ]
机构
[1] Tech Univ Dresden, Fak Math, Inst Anal, Dresden, Germany
[2] Univ Strathclyde, Dept Math & Stat, Glasgow, Lanark, Scotland
关键词
Differential-algebraic equations; higher index; infinite-dimensional state space; consistent initial values; distributional solutions;
D O I
10.1007/978-3-319-75996-8_27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider initial value problems for differential-algebraic equations in a possibly infinite-dimensional Hilbert space. Assuming a growth condition for the associated operator pencil, we prove existence and uniqueness of solutions for arbitrary initial values in a distributional sense. Moreover, we construct a nested sequence of subspaces for initial values in order to obtain classical solutions.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 50 条