DENOISING OF SHORT EXPOSURE TRANSMISSION ELECTRON MICROSCOPY IMAGES FOR ULTRASTRUCTURAL ENHANCEMENT

被引:0
|
作者
Bajic, Buda [1 ]
Suveer, Amit [2 ]
Gupta, Anindya [3 ]
Pepic, Ivana [1 ]
Lindblad, Joakim [2 ,4 ]
Sladoje, Natasa [2 ,4 ]
Sintorn, Ida-Maria [2 ,5 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia
[2] Uppsala Univ, Dept Informat Technol, Ctr Image Anal, Uppsala, Sweden
[3] Tallinn Univ Technol, TJ Seebeck Dept Elect, Tallinn, Estonia
[4] Serbian Acad Arts & Sci, Math Inst, Belgrade, Serbia
[5] Vironova AB, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Denoising; Convolutional Neural Networks; TEM; Cilia;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Transmission Electron Microscopy (TEM) is commonly used for structural analysis at the nm scale in material and biological sciences. Fast acquisition and low dose are desired to minimize the influence of external factors on the acquisition as well as the interaction of electrons with the sample. However, the resulting images are very noisy, which affects both manual and automated analysis. We present a comparative study of block matching, wavelet domain, energy minimization, and deep convolutional neural network based approaches to denoise short exposure high-resolution TEM images of cilia. In addition, we evaluate the effect of denoising before or after registering multiple short exposure images of the same imaging field to further enhance fine details.
引用
收藏
页码:921 / 925
页数:5
相关论文
共 50 条
  • [1] Denoising of Transmission Electron Microscopy Images for Atomic Defect Identification
    Zhang, Shiyi
    Zhang, Qing
    Ran, Xu
    Wu, Xing
    Wang, Yan
    Wang, Chaolun
    2024 IEEE INTERNATIONAL SYMPOSIUM ON THE PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS, IPFA 2024, 2024,
  • [2] Enhancement of cell boundaries in transmission electron microscopy images
    Tasdizen, T
    Whitaker, R
    Marc, R
    Jones, B
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1581 - 1584
  • [3] A multiresolution approach for enhancement and denoising of microscopy images
    Bal, Ufuk
    Engin, Mehmet
    Utzinger, Urs
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (04) : 787 - 799
  • [4] A multiresolution approach for enhancement and denoising of microscopy images
    Ufuk Bal
    Mehmet Engin
    Urs Utzinger
    Signal, Image and Video Processing, 2015, 9 : 787 - 799
  • [5] Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images
    Berkels, Benjamin
    Wirth, Benedikt
    INVERSE PROBLEMS, 2017, 33 (09)
  • [6] Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images
    Wang F.
    Henninen T.R.
    Keller D.
    Erni R.
    Applied Microscopy, 2020, 50 (01)
  • [7] Sinogram denoising of cryo-electron microscopy images
    Mielikäinen, T
    Ravantti, J
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2005, VOL 4, PROCEEDINGS, 2005, 3483 : 1251 - 1261
  • [8] Non Parametric Denoising Methods Based on Wavelets: Application to Electron Microscopy Images in Low Exposure Time
    Soumia, Sid Ahmed
    Messai, Zoubeida
    Ouahabi, Abdeldjalil
    Trepout, Sylvain
    Messaoudi, Cedric
    Marco, Sergio
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014), 2015, 1641 : 403 - 413
  • [9] Ultrastructural characterization of amyloidoma by scanning and transmission electron microscopy
    Garcia, C. A.
    Gamb, S. I.
    Miller, D. V.
    MODERN PATHOLOGY, 2008, 21 : 374A - 375A
  • [10] Discoid meniscus - An ultrastructural study with transmission electron microscopy
    Atay, Ozgur Ahmet
    Pekmezci, Murat
    Doral, Mahmut Nedim
    Sargon, Mustafa Fevzi
    Ayvaz, Mehmet
    Johnson, Darren L.
    AMERICAN JOURNAL OF SPORTS MEDICINE, 2007, 35 (03): : 475 - 478