On Test Statistics in Profile Analysis with High-dimensional Data

被引:1
|
作者
Onozawa, Mizuki [1 ]
Nishiyama, Takahiro [2 ]
Seo, Takashi [3 ]
机构
[1] Tokyo Univ Sci, Grad Sch Sci, Dept Math Informat Sci, Tokyo, Japan
[2] Senshu Univ, Sch Business Adm, Dept Business Adm, Kawasaki, Kanagawa, Japan
[3] Tokyo Univ Sci, Dept Math Informat Sci, Fac Sci, Tokyo, Japan
关键词
Behrens-Fisher problem; Dempster trace criterion; High-dimensional data; Hotelling's T-2-type statistic; Profile analysis; 62H10; 62H15; BEHRENS-FISHER PROBLEM; DISTRIBUTIONS;
D O I
10.1080/03610918.2014.953686
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider profile analysis with unequal covariance matrices under multivariate normality. In particular, we discuss this problem for high-dimensional data where the dimension is larger than the sample size. We propose three test statistics based on Bennett's (1951) transformation and the Dempster trace criterion proposed by Dempster (1958). We derive the null distributions as well as the nonnull distributions of the test statistics. Finally, in order to investigate the accuracy of the proposed statistics, we perform Monte Carlo simulations for some selected values of parameters.
引用
收藏
页码:3716 / 3743
页数:28
相关论文
共 50 条
  • [1] Recent advances in functional data analysis and high-dimensional statistics
    Aneiros, German
    Cao, Ricardo
    Fraiman, Ricardo
    Genest, Christian
    Vieu, Philippe
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 : 3 - 9
  • [2] Efficient global monitoring statistics for high-dimensional data
    Li, Jun
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2020, 36 (01) : 18 - 32
  • [3] Integrative analysis of individual-level data and high-dimensional summary statistics
    Fu, Sheng
    Deng, Lu
    Zhang, Han
    Qin, Jing
    Yu, Kai
    [J]. BIOINFORMATICS, 2023, 39 (04)
  • [4] TEST OF SIGNIFICANCE FOR HIGH-DIMENSIONAL LONGITUDINAL DATA
    Fang, Ethan X.
    Ning, Yang
    Li, Runze
    [J]. ANNALS OF STATISTICS, 2020, 48 (05): : 2622 - 2645
  • [5] A new test of independence for high-dimensional data
    Mao, Guangyu
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 93 : 14 - 18
  • [6] Introduction to High-Dimensional Statistics
    Parry, Katharina
    Vignes, Matthieu
    [J]. BIOMETRICS, 2018, 74 (04) : 1524 - 1525
  • [7] Introduction to high-dimensional statistics
    Chen, Li-Pang
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 : S767 - S767
  • [8] Introduction to High-dimensional Statistics
    Young, G. Alastair
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2015, 83 (03) : 515 - 516
  • [9] Introduction to High-Dimensional Statistics
    King, Caleb
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2023, 55 (01) : 121 - 121
  • [10] High-dimensional data analysis and visualisation
    Chen, Cathy W. S.
    Lombardo, Rosaria
    Ripamonti, Enrico
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (01) : 1 - 2