A numerical implementation of Fokas boundary integral approach: Laplace's equation on a polygonal domain

被引:42
|
作者
Fornberg, Bengt [2 ]
Flyer, Natasha [1 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
boundary integral method; global equations; Dirichlet-to-Neumann map; Laplace equation; Fokas transform method; polygonal domain; PARTIAL-DIFFERENTIAL-EQUATIONS; LINEAR ELLIPTIC PDES; TRANSFORM METHOD; SOLVING EVOLUTION; CONVEX POLYGON; ELEMENT-METHOD; SINGULARITIES; CORNER;
D O I
10.1098/rspa.2011.0032
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A recently discovered transform approach allows a large class of PDEs to be solved in terms of boundary and/or contour integrals. We introduce here a spectrally accurate numerical discretization of this approach for the case of Laplace's equation on a polygonal domain, and compare it against an also spectrally accurate implementation of the traditional boundary integral formulation.
引用
收藏
页码:2983 / 3003
页数:21
相关论文
共 50 条