Einstein relation for random walks in random environments

被引:19
|
作者
Komorowski, T
Olla, S
机构
[1] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris, France
[2] Marie Curie Sklodowska Univ, Math Inst, PL-20031 Lublin, Poland
关键词
passive tracer; random walk in random environment; Einstein relation;
D O I
10.1016/j.spa.2005.03.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a tracer particle performing a nearest neighbor random walk on Z(d) in dimension d >= 3 with random jump rates. This kind of a walk models the motion of a charged particle under a constant external electric field. We assume that the jump rates admit only two values 0 < y(-) < y(+) < + infinity, representing the lower and upper conductivities. We prove the existence of the mobility coefficient and that it equals to the diffusivity coefficient of the particle in zero external field. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1279 / 1301
页数:23
相关论文
共 50 条
  • [1] EINSTEIN RELATION FOR RANDOM WALKS IN RANDOM ENVIRONMENT
    Guo, Xiaoqin
    ANNALS OF PROBABILITY, 2016, 44 (01): : 324 - 359
  • [2] The Einstein Relation for Random Walks on Graphs
    András Telcs
    Journal of Statistical Physics, 2006, 122 : 617 - 645
  • [3] The Einstein relation for random walks on graphs
    Teles, A
    JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (04) : 617 - 645
  • [4] Einstein relation for reversible random walks in random environment on Z
    Lam, Hoang-Chuong
    Depauw, Jerome
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (04) : 983 - 996
  • [5] Correction: The Einstein Relation for Random Walks on Graphs
    Andr´as Telcs
    Journal of Statistical Physics, 190
  • [6] Random walks in random environments
    Zeitouni, Ofer
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (40): : R433 - R464
  • [7] Random Walks in Cooling Random Environments
    Avena, Luca
    den Hollander, Frank
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 23 - 42
  • [8] Random Walks in Degenerate Random Environments
    Holmes, Mark
    Salisbury, Thomas S.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (05): : 1050 - 1077
  • [10] Book review: Random Walks and Random Environments Volume I: Random Walks
    Hughes, Barry D.
    Australian and New Zealand Physicist, 1996, 33 (03):